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EXECUTIVE SUMMARY 
 
This report describes a portion of Task C�Probability of Detection of Phase I of the Engine 
Titanium Consortium.  In particular, the development of a new methodology for the 
determination of probability of detection (POD) is reported.  It is then applied to the estimation 
of the POD for the ultrasonic detection of flat-bottom holes (FBHs) and synthetic hard-alpha 
inclusions (SHAs) in aircraft engine titanium alloys.  
 
The report opens with a discussion of the background that motivated this research.  This research 
encompasses the following:  
 
1. The Sioux City incident. 

2. The need to determine the POD for the ultrasonic detection of the internal, hard-alpha 
inclusions that were its cause.  

3. The existing methodologies do not provide a comprehensive determination of POD for 
the ultrasonic detection of such naturally occurring internal defects.   

 
In a detailed discussion of this background, the statistical detection theory, based on a 
determination of signal and noise distributions that exist with and without the presence of a flaw, 
shows much promise in providing the required answers.  It is further noted that this approach 
would have the additional advantage of quantifying the probability of false alarms (PFA).  This 
would provide a rational basis for considering the quantitative tradeoffs between high-
detectability (safety related) and high-reject levels (cost related).  Because of the rarity of the 
natural hard-alpha inclusions, the use of physical models of the flaw response, which limits the 
amount of experimental information required, holds particular promise.  A methodology that 
relies on such models would have the derived benefit of allowing estimates of POD to be made 
in new situations.  However, samples are not available because of cost, time, or fabrication 
limitations.  This report describes the methodology that was developed in response to these 
motivations.  
 
This report contains five major sections.  Sections 1-4 develop the objectives and motivation in 
more detail.  Section 5 presents the new methodology as well as a detailed discussion of the 
underlying physical and statistical assumptions.  Motivated by the considerations summarized 
above, this methodology uses the physical models of the inspection process to predict what the 
flaw response would be in the absence of multiple sources of variation such as microstructural 
effects.  Section 6, supported by appendix A, discusses these models and a preliminary set of 
validation experiments.  These experiments are based on simple geometry and test conditions 
that have been conducted to determine their accuracy for these limited test cases.  Section 7 
presents examples of POD predictions for FBHs and SHAs that have been made using the new 
methodology, based on conditions that exist in the laboratory examination of flat plates.  
Included are predictions of the effects of such experimentally controllable factors as scan plan, 
gate width, and transducer frequency on POD.  Further verification is described in section 7, in 
which these predictions of the new methodology are compared to those of existent 
methodologies for the case of FBHs.  The need for the new methodology was reconfirmed 
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because the existing methodologies were unable to make similar comparative predictions for the 
SHAs. 
 
Section 8 provides a comparison of new methodology predictions for FBH POD to predictions of 
other methods of analysis.  Section 9 presents the results for studies of the functional forms of 
signal and noise distributions.  These results will be included in future implementations of the 
new methodology.  The goal of this work will be to incorporate as much physical understanding 
about the forms of these distributions into the methodology.  This will further reduce the amount 
of experimental data that is required and increase the accuracy in treating issues such as the large 
tail of the noise distribution that controls false rejects.   
 
Section 10 indicates the nature of in-progress work, including further verification for full-scale 
components under industrial inspection condition and extension to naturally occurring hard-
alpha inclusions.   
 
Those studies, which were completed after the work described herein but before the publication 
of this report, demonstrated that this methodology will require further refinement in order to 
accurately predict the detection probabilities of defects in a realistic industrial environment.  
 
In particular, they show the need to �productionize� the methodology taking into account a 
number of input parameters to the physics-based models are not fully controlled in an industrial 
environment and thus represent a source of additional variability.  Follow-on work is planned to 
develop approaches to introduce these and any other sources of variability into a POD prediction 
that is full representative of the industrial setting. 
 
Future reports will document the results of those studies upon their completion.  Section 11 
summarizes the current status of the POD effort and provides some concluding comments. 
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1.  INTRODUCTION. 

The probability of detection (POD) function relates the detectability of a flaw to its size and 
other features.  It quantifies the ability of a nondestructive measurement system to detect flaws 
and provides a means to make improvements in inspections given changes in measurement 
techniques, procedures, and systems.  This metric has a variety of uses.  From one perspective, it 
provides a basis for assuring the public and/or customers that adequate detectability has been 
achieved in particular applications.  From another perspective, the POD provides the link 
between the inspection and design communities.  Thus, this link is an integral part of life 
management programs.  In the context of the latter applications, the POD must be combined with 
other information (such as �a priori� information about defect distributions) to make a prediction 
of the distribution of expected part lifetimes, as influenced by inspection.   
 
This report describes a new methodology for determining the POD and its application to 
subsurface flaws in aircraft engine components.  A renewed attention to the detection of sub-
surface flaws was motivated by a serious accident in 1989 that was attributed to hard-alpha 
inclusions in titanium alloys.  Given known limitations of existing methodologies in evaluating 
the POD of ultrasonic techniques that were designed to detect these hard-alpha inclusions, the 
development of a new methodology was undertaken as one task of the Engine Titanium 
Consortium (ETC).  As the methodology developed, it provided a number of other advantages 
beyond those initially motivating the work.  This report documents the development of the 
methodology, its early applications and verification against existing methodologies, as well as 
future steps that are planned for further development and utilization.  
 
2.  OUTLINE OF THE REPORT. 

The first four sections of this report provide background and motivation.  The major technical 
results will be presented in sections 5-9.  Section 5 presents the technical approach developed by 
the ETC.  In section 5.1, the conceptual basis of the approach, the application of statistical 
detection theory augmented by physical models of the inspection process, is presented.  In 
essence, one seeks to explicitly develop a quantitative description of the distributions of signal 
and noise that govern the detection process using well-validated physical models wherever 
possible to limit the number of samples that must be prepared and experiments that must be 
conducted.  In section 5.2, the general form of the implementation of these ideas, which has been 
developed by the ETC, is presented.   
 
Section 6 summarizes the physical models that are incorporated in the methodology, including 
the physical approximations made and the results of experimental verifications.  Detailed 
information to support that summary is deferred to appendix A to assure that extended 
discussions of ultrasonic theory and experiment do not detract from the continuity of this report, 
which is otherwise concerned with issues of statistical reliability analysis. 
 
Section 7 presents the results of applying this methodology to two classes of defects, flat-bottom 
holes (FBHs) and synthetic hard-alpha (SHAs) inclusions in aircraft engine titanium alloys.  
Included are predictions of POD, probability of false alarms (PFA), and their combination in the 
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form of relative operating characteristics (ROC) as influenced by details of measurements 
systems, e.g., frequency, transducer characteristics, and scan plans.   
 
In section 8, existent methodologies are applied to the same set of data to predict the POD of 
FBHs.  The comparisons of the results of sections 7 and 8 serve both to illustrate some of the 
difficulties in applying existent methodologies to internal flaw data, and when these have been 
overcome, to verify the predictions of the new methodology. 
 
In the course of the activities of the POD task and its coupling to other parts of the ETC such as 
the Fundamental Studies Task, information was developed that time did not allow to be 
incorporated in the first-generation methodology but which will be available for the next 
generation.  Section 9 documents the understanding which deals with the proper functional forms 
of the statistical descriptions of signal and noise distributions, the effects of surface roughness, 
and material effects which modulate the beam amplitude and profile. 
 
Section 10 provides a discussion of future directions.  Included are brief descriptions of the 
Random Defect Block experiment, which provides an opportunity to validate the physical 
models and the methodology against representative production configuration, and of the 
Contaminated Billet Study, in which ultrasonic scattering from naturally occurring, hard-alpha 
inclusions is being carefully measured, after which the defects are being successively sectioned 
to obtain complete flaw descriptions.  These results will be used to incorporate information from 
naturally occurring hard-alpha inclusions in the POD predictions of the methodology.  A 
discussion follows of the methodology to obtain a �portable POD� which realizes some of the 
desirable attributes discussed at the end of section 4, e.g., the estimates of the effects of changes 
in inspection procedures for engineering and management purposes.  The section concludes with 
a discussion of strategies for adjusting the methodology for the parameters of naturally occurring 
flaws.   
 
Section 11, summarizing what has been accomplished and issues that remain outstanding, 
completes the report. 
 
3.  OBJECTIVES. 

The objectives of the POD Task of the ETC was to develop a methodology to: 
 
• determine the POD of flaws, especially subsurface, in materials. 

• verify the methodology. 

• provide appropriate quantitative information to allow risk and life management studies to 
be carried out. 

 
This report describes the development of the methodology and its ability to verify flat-bottom 
holes and synthetic hard-alpha inclusions in titanium alloys.   
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4.  MOTIVATION. 

4.1  CRASH OF UNITED AIRLINES FLIGHT 232 IN SIOUX CITY. 

Quantification of the nondestructive POD inspections is an integral part of ensuring initial safety 
and managing safe life of critical structural components.  For the case of titanium rotating 
components of aircraft engines, attention was focused on such inspections and their reliability by 
the 1989 crash of United Airlines Flight 232 in Sioux City, Iowa.  Despite the heroic efforts of 
the pilot and crew, 111 lives were lost in the crash.  The cause of the crash was found to be the 
separation of the stage 1 fan disk resulting in the loss of hydraulic fluid and control of the 
airplane.  Subsequent analysis revealed that this disk separation was the result of a fatigue crack 
that had originated from a metallurgical inhomogeneity (i.e., a hard-alpha inclusion) which 
consisted of a region embrittled by enhanced nitrogen content and contained microporosity and 
microcracks.  The hard-alpha inclusion had gone undetected during the disk manufacturing 
process inspections.  Also, neither the inclusion nor the resulting fatigue had been detected 
during in-service inspections. 
 
This incident led to an enhanced concern regarding the reliability of the inspection of aircraft 
engine components, particularly those made from titanium alloys.  In the Titanium Rotating 
Components Review Team Report [1], a number of recommendations were made regarding 
improvements in inspection and its quantification.  Included in the latter were the following. 
 
• Manufacturing Inspection.  �Require the highest standard (smallest flat-bottomed hole 

(FBH) or equivalent) practicable in the industry for the size of part being inspected.� 
 
• In-Service Inspection.  �Develop criteria, within two years, to inspect all critical, life-

limited, in-service parts at intervals established by fracture mechanics technology.� 
 
• Design Procedure.  �Require life management methodologies to consider the effect of 

metallurgical defects on part life, accounting for the maximum defect sizes which may be 
missed during production and in-service inspections.� 

 
• Research and Development.  �Establish industry wide probability of detection (POD) 

curves for fluorescent penetrant, ultrasonic, and eddy-current manufacturing and in-
service inspection methods and processes.� 

 
• FAA Policy and Guidance.  �Develop new advisory material on lifing analysis and life 

management procedures for engine life-limited parts.� 
 
Each of these explicitly or implicitly identifies the need for a quantification of the POD of the 
inspection techniques and illustrates the importance of that quantity in life management. 
 
In response to the Sioux City accident and the recommendation of the Titanium Rotating 
Components Review Team Report, the FAA formed the Engine Titanium Consortium, consisting 
of the closely coupled efforts of AlliedSignal, General Electric, Pratt & Whitney, and Iowa State 
University in a consortium facilitated by Iowa State University.  The Phase I program of the ETC 
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had four tasks:  Fundamental Studies in Titanium, Ultrasonic Inspection in Production, Eddy-
Current Inspection In-Service, and Probability of Detection.  This report documents a portion of 
the efforts of the Probability of Detection Task. 
 
4.2  UNIQUE ISSUES ASSOCIATED WITH HARD-ALPHA DETECTION. 

Two factors make it difficult to detect hard-alpha inclusions.  First, these distributed defects can 
have a complex structure and associated ultrasonic reflections can be quite weak.  The defects 
are caused by the presence of excess nitrogen or oxygen that is occasionally introduced into the 
material during ingot preparation due to a variety of possible causes [1].  These impurities 
occupy interstitial sites in the lattice, leading to a brittle structure that is prone to cracking.  
Figure 1 shows a micrograph of a hard-alpha inclusion.  The lighter region is the microstructure 
where enlarged, brittle, alpha-phase grains have been created by the presence of nitrogen.   
 
It is difficult to detect this condition due to the presence of interstitial impurities that cause the 
density and elastic constants of the embrittled region to differ slightly from those of the titanium 
alloy in which they are embedded.  With typical variations in density and elastic constants, the 
properties, which control ultrasonic reflectivity, might be on the order of 10% [2].  Moreover, 
since there is a gradient in nitrogen content, the reflections are somewhat diffuse.  Hence, hard-
alpha inclusions will produce very weak ultrasonic reflections, which can be difficult to detect.  
This difficulty is often partially mitigated by the presence of small pores or cracks, indicated by 
the dark regions in figure 1.  This may be created during the thermomechanical processing of the 
material by the fracture of the brittle hard-alpha inclusions.  Although these pores or cracks are 
stronger reflectors than the embrittled titanium, they may be small and have complex 
morphologies.  They therefore can produce relatively weak signals themselves. 
 

 
FIGURE 1.  PHOTOMICROGRAPH OF HARD-ALPHA INCLUSION SHOWING REGIONS 

EMBRITTLED BY ENHANCED NITROGEN CONTENT (LIGHT MICROSTRUCTURE) 
AND PORES (DARK REGIONS) PRODUCED BY FRACTURE DURING 

THERMOMECHANICAL PROCESSING 
 
Secondly, the detection of these defects is even more difficult because of the structure of 
titanium alloys.  Aircraft engine alloys have a two-phase structure that can be very complex, 
including features at both the microstructural (having dimensions on the order of micrometers) 
and macrostructural (having dimensions on the order of millimeters) scales.  Figure 2 illustrates 
this by showing etched and illuminated metallographs that reveal these structures.  As a result, 
the material can appear quite inhomogeneous to an ultrasonic wave.  Hence, as the ultrasonic 
wave propagates through the material, there is much backscattered noise arising from benign 
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inhomogeneities in the microstructure.  This tends to mask the weak signals from the hard-alpha 
inclusions.  Figure 3 schematically summarizes the problem.   
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FIGURE 2.  METALLOGRAPHS OF TYPICAL TITANIUM ALLOY STRUCTURE  

(a) MACROSTRUCTURE (AS SEEN UNDER CROSSED-POLARIZER) AND  
(b) MICROSTRUCTURE 

 

 
FIGURE 3.  SCHEMATIC DIAGRAM SHOWING THE COMPETITION 
BETWEEN BACKSCATTERED NOISE AND SIGNALS REFLECTED 

FROM HARD-ALPHA INCLUSIONS 
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The situation is further complicated by other effects that the macrostructure has on the ultrasonic 
beam itself.  Included are steering of the beam away from the intended direction and the 
development of phase fluctuations across the beam [3].  The latter can weaken the strength of 
signals returned from what would normally be a strong reflector such as a planar surface or flat-
bottom hole. 
 
4.3  NEED FOR A NEW METHODOLOGY. 

A number of empirical methodologies already exist which quantifies POD.  In general, these are 
based on the idea of presenting to the inspector or inspection system a series of opportunities that 
are used to define the performance of the inspection.  A detailed discussion of some of these 
methods can be found in reference 4.  In earlier techniques, a number of opportunities are 
presented in each of several size ranges, yet the only information that is recorded is whether or 
not the flaw had been detected.  POD and associated confidence levels are determined by 
performing a statistical analysis of the results.   
 
The signal response approach that was developed later records the amplitude in each inspection.  
Certain assumptions are made about the shape the distribution signals taken from nominally 
identical flaws, and the data are used to determine the parameters of that distribution.  This 
procedure allows POD information to be obtained from a significantly smaller number of 
samples.  Further discussion of these techniques are found in section 5.1.  Section 8, on the other 
hand, provides a preliminary verification of the new methodology by comparing its predictions, 
using existing methodologies, to obtain the same data for the flat-bottom hole case in titanium 
alloys. 
 
When existing methodologies were applied to the ultrasonic detection of complex, subsurface 
defects such as hard-alpha inclusions, severe limitations were experienced.  Table 1 summarizes 
some of the issues in contrast to the situation for conventional inspection problems, such as the 
detection of surface-breaking, low-cycle fatigue cracks, and life prediction based on the results.  
In either class of problems, such conditions as ultrasonic material properties, component 
geometry, and inspection parameters are generally known or can be obtained by simple 
measurement.  However, whereas flaw parameters can be obtained by direct observations for 
relatively simple cases, it is difficult through direct observation to detect low-cycle fatigue 
cracks for internal hard-alpha inclusions.  Moreover, if one wishes to develop a correlation 
between flaw response and flaw parameters, the inability to replicate specimens with flaws that 
represent those that occur naturally is a further problem, as well as the absence of a 
nondestructive referee technique.  Finally, when relating the flaw parameters to structural 
severity, both the difficulty in producing representative flaws and a multitude of parameters 
(variable nitrogen content and distribution and complex pattern of pores and cracks), which pose 
important challenges, must be considered. 
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TABLE 1.  ISSUES IN THE DETECTION OF HARD-ALPHA INCLUSIONS 
AND SUBSEQUENT LIFE PREDICTION THAT LEAD TO THE  

NEED FOR A NEW POD METHODOLOGY 
 

Condition of Interest 
Availability for More 

Conventional Problems 
Availability for Hard- 

Alpha Analysis 
Ultrasonic material properties-
base metal 

Material property tests Material property tests 

Geometry of components Direct observation Direct observation 
Inspection parameters Direct observation Direct observation 
Flaw parameters Direct observation Direct observations difficult or 

impossible 
Correlation of response to 
flaw parameters 

From destructive or 
nondestructive evaluation 

Limited by inability to 
produce specimens with 
representative flaws, no non-
destructive referee technique 
available 

Correlation of flaw parameters 
to structural severity 

Material/structural testing Too many parameters for 
complete severity assessment, 
flaws difficult to simulate 

 
Another motivation for seeking a new methodology is the fact that existing methodologies do not 
quantify the PFA.  This is extremely important to the original equipment manufacturers (OEMs) 
since economic losses associated with false calls play an important role in the establishment and 
utilization of inspection technologies.  The choice of threshold, which determines POD for a 
given inspection, will be strongly influenced by the PFA that is acceptable and also determined 
by that threshold.   
 
Given the need for a new methodology driven by these issues, other desirable attributes have 
been identified.  Included are the ability to use information from all sources, e.g., laboratory 
studies and the analysis of signals from naturally occurring defects found in the field; the ability 
to provide estimates of the effects of changes in inspection procedure on POD without requiring 
a new set of samples and experiments each time; and the ability to rapidly use that information to 
provide engineering feedback to nondestructive evaluation (NDE) personnel, management, and 
the lifing community. 
 
5.  APPROACH FOR A NEW METHODOLOGY. 

5.1  GENERAL S/N-BASED METHODOLOGY CONCEPT. 

5.1.1  Background:  Hit-Miss Methods. 

In the great majority of NDE applications, the flaw detection capability of specific techniques 
has been expressed indirectly through a reference to the size of the artificial or simulated flaws.  
These techniques are used to ensure that the sensitivity of inspections is under control. 
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For example, small notches and fatigue cracks in surrogate geometries are used to establish 
eddy-current inspections that are conducted at the same sensitivity, independent of when, where, 
or by whom the inspection is carried out.  Flat-bottom holes (which are effectively planar, 
circular, subsurface voids) serve the same purpose for ultrasonic inspections. 
 
This type of sensitivity standardization (sometimes called �calibration�), while effective for 
process control purposes, does not address the capability of the NDE technique to detect �real� 
(i.e., naturally occurring) flaws.  The size of the reference flaw�the notch or FBH�provides 
some indication about the approximate size of the crack or inclusion that might be detectable.  
However, this is only a very approximate estimate.  The properties of naturally occurring flaws 
are unlikely to coincide with those of the reference flaws.  Because the differences in these 
properties are unclear, it is difficult to make more than a qualitative statement about their relative 
detectability.  For example, it is possible to forecast that inclusions will be less detectable 
ultrasonically than FBHs of the same size or that doubling the scan increment is likely to 
decrease the likelihood of detecting small flaws.  Therefore, it is much more difficult to 
determine how large the difference in detectability might be. 
 
One of the earliest attempts to study this relationship was launched in the power generation 
industry in the late 1950s.  Flaws that had been detected by ultrasonic inspection of steam 
turbine and generator rotor forgings were trepanned out.  Their sizes were compared with 
corresponding estimates based on the FBH�s sizes used in standardizing the various inspections 
(e.g., using a simple mathematical model for the dependence of FBH response on size and 
distance from the transducer and the assumption that the response from natural flaws would 
behave similarly).  This concept of the �Equivalent Flat-Bottom Hole� (EFBH)� the size of the 
FBH, at the same depth as the natural flaw, would give the same predicted signal as the natural 
flaw�allowed an extensive database to be developed, which compared the measured flaw sizes 
with the EFBH sizes.  These results were used to estimate the residual life of other rotors 
containing ultrasonic indications [5].  However, they were not expressed in probabilistic terms. 
 
Probabilistic concepts of flaw detectability were developed by the aerospace industry in the late 
1960s.  The motivation behind the concepts were to provide data for calculations to determine 
the life of cyclically stressed components by using fracture mechanics techniques.  One of the 
inputs to such programs was the estimate of flaw sizes that might be in a component as a result 
of the properties of the materials, processes used in its manufacture, and that might remain in it 
even after NDE.  It is a given that NDE techniques cannot guarantee that flaws of all sizes will 
be able to be detected.  One of the inputs to such programs was the estimate of flaw sizes that 
might be in a component as a result of the properties of the materials and processes used in its 
manufacture and that might remain in it even after NDE.  However, it has been found that NDE 
techniques cannot guarantee the detection of all flaw sizes.  Expressing detectability as a 
function of flaw size has proven useful.  However, the number of factors that could affect 
detectability was much larger than the independent pieces of information that were provided by 
the NDE technique.  Thus, detectability was expressed in probabilistic terms as a probability of 
detection. 
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As an example of this, consider ultrasonic inspection that typically identifies only the amplitude 
and time delay of response signals (indications).  However, the response is affected by the shape, 
orientation, and chemical-physical character of the flaw as well as by its size and depth.  These 
additional factors result in a scatter in the response from flaws of a specific size.  This scatter 
may be thought of as random in nature, which leads in turn to the concept of POD. 
 
The U.S. Air Force�s interest in fracture mechanics techniques began in the late 1960s and was 
initially focused on applications to airframes.  It led to the sponsorship of several major data 
acquisition programs and the publication of MIL-STD-1530A (USAF) in 1975, which described 
requirements for the Aircraft Structural Integrity Program (ASIP).  Contemporaneously, the 
National Aeronautics and Space Administration began awarding contracts for acquisition of 
quantitative NDE data and published a Shuttle Fracture Control Plan in 1974.  The results from 
these studies were reported in terms of POD graphs as a function of size for various 
combinations of process, material, inspector, etc.  The 1970s saw the use of POD concepts by 
individual industrial companies for the comparison of the effectiveness of inspection procedures. 
 
As mentioned in section 3.3, the methods for POD analysis that were in use typically treated all 
inspection data as binomial, regardless of whether the NDE technique produced a response that 
was proportional to the size of the flaw.  However, all that was recorded was whether or not the 
response from an individual flaw exceeded some predetermined detection threshold, namely, a 
�hit� or a �miss.�  Data acquisition obviously required prior knowledge of the existence and 
approximate size of each flaw.  This requirement focused attention on evaluation of techniques 
for detection of surface-connected flaws such as the low-cycle fatigue (LCF) cracks.  Methods 
were developed for generating such flaws under controlled conditions, usually by using notches 
to start crack growth as the samples were cyclically stressed.  Once crack growth was initiated, 
the notches were machined off, and the crack was allowed to grow until the desired crack length 
was attained as indicated by using a high-powered optical microscope. 
 
One of these binomial methods of analysis was published as a Recommended Practice by the 
American Society for Nondestructive Testing [6].  It involved using a moderate number of flaws, 
preferably of the same nominal size.  If inspection of seven flaws resulted in all seven being 
detected, a POD of 90% with 50% associated confidence, may be claimed for this size and 
number.  Detection of 29 out of 29 (or 45 out of 46, or 59 out of 61, etc.) is needed to establish 
90% POD with 95% confidence.  By repeating this approach with flaws of various sizes, the 
approximate dependence of POD on flaw size may be established.  This is rarely attempted, 
however, since the number of flaws required may be daunting. 
 
Other methods of analysis used in the 1970s and early 1980s tried to demonstrate the functional 
dependence of POD on flaw size with fewer flaw samples.  This was done by using a variety of 
arbitrary averaging techniques, which are less rigorous statistically.  One example was the 
Range-Interval Method (RIM) in which flaws were grouped into adjacent flaw size ranges, and 
the simple proportion of flaws detected in each range were treated as the best estimate for the 
true POD for flaws in that range.  Graphs were plotted of these POD estimates versus the 
medium flaw size (or, sometimes, the smaller flaw) of the corresponding range.  The individual 
data points frequently failed to show the monotonically increasing dependence of POD on size 
that was expected on intuitive or physical grounds.  This deficiency was usually remedied by 
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drawing a smooth monotonically increasing curve through the general vicinity of the plotted 
data.  The obvious subjectivity involved in this procedure led to several widely used alternatives 
that tried to generate a smooth monotonic curve by resorting to a variety of data-averaging 
techniques.  One example of this approach is the Floating 60-Point Averaging Method.  In it, the 
POD was first calculated for the largest 60 flaws.  For the second POD calculation, they were 
omitted and replaced by the 61st largest flaw and so on until a POD had been calculated for the 
smallest 60 flaws.  This approach was objective because the result obtained was independent of 
the analyst and produced curves that approximated�but still did not quite achieve�the desired 
monotonically increasing form. 
 
The Pass/Fail (PF) option in the POD software [7] developed under USAF sponsorship was a 
culmination of the development of methods for analyzing hit/miss data.  The PF program 
initially assumed1 a log-logistic model2 for the dependence of POD on flaw size, viz: 
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where �a� is the flaw size and α and β are parameters of the model, the values of which are 
determined by maximum-likelihood estimation for each set of inspection data.  Provided that 
there is an overlap between the sizes of detected and nondetected flaws, the PF program usually3 
generates graphs of both the POD estimate and the associated lower one-sided 95% confidence 
bound on POD, as functions of flaw size, that show the expected smooth monotonically 
increasing dependence.  The PF method has been widely applied to the estimation of POD for 
penetrant processes, for which the inspection data have typically been recorded only in pass/fail 
form, even though some approximate measurement of indication size is an intrinsic part of many 
such inspection procedures. 
 
5.1.2  Methods Using Signal Distributions. 

The hit/miss decision in an NDE process is based on signal response data that depends on 
various parameters, including the flaw size.  Upon completing the development of POD 
analytical methods such as the PF program, it was recognized that response data generates more 
information than simply the hit-miss data.  Consequently, an alternative method of analysis was 
developed to deal with response data.  Since response data may be treated as a measure (albeit 
frequently imprecise) of the flaw size producing it, statistical conventions resulted in the 
response being designated as â, and the POD method [8].  Thus, it became known as â versus a4. 
 
Since eddy-current instruments produce such data in readily interpretable electronic form that are 
compatible with the same low-cycle fatigue cracks that were being generated for use with the 
earlier hit/miss methods, the â versus a method has been widely used in the analysis of eddy-
current data.  This application was encouraged by the extension of fracture mechanics techniques 
                                                 
1 This �assumption� was based on empirical observation that it provided a better fit to experimental data than any of 

several competing models under review. 
2 In recent versions of the PF program, the log-logistic model has been replaced with a cumulative lognormal model. 
3 The calculation sometimes fails to converge. 
4 Read as a-hat versus a. 
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to aircraft engine applications with requirements defined by MIL-STD-1783 (USAF) that was 
published in 1984. 
 
As in the PF method, a parametric approach is used where the dependence of POD on flaw size 
is modeled5 by a cumulative lognormal distribution function (Φ): 
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where adec is the decision threshold used in deciding whether an indication is classified as 
detected or not.  The parameters β0 and β1 of this function are obtained from regression analysis 
of the dependence of ln(â) on ln(a).  The third regression parameter, σ, is the standard deviation 
of the distribution of the responses for any given flaw size (which usually can be shown to be 
plausibly normal in these ln-ln coordinates).  The â versus a method is thus able to take 
advantage of the well-documented properties of the normal distribution in extracting estimates of 
POD(a) from the ln(â) versus ln(a) data.  As with the PF method, it generates curves showing the 
dependence on flaw size of the mean POD and of the associated lower one-sided 95% 
confidence limit.  As with the PF method, it is typically applied to laboratory-generated, low-
cycle fatigue cracks, the lengths of which have been determined by examination with an optical 
microscope.  Information about crack depths is obtained from destructive examination of cracks 
which have been generated under similar stress conditions.  
 
The Effective Reflectivity method [8] is another POD methodology that was also developed in 
the early 1980s that uses the properties of the normal distribution.  This method was developed 
to address the challenges presented by the need to estimate POD for ultrasonic inspection of 
subsurface inclusions in forged metals.  The lack of any method for generating artificial flaws 
that realistically simulated the properties of natural flaws was rendered inapplicable in earlier 
methods outlined above.  A technique analogous to the laboratory-generated, low-cycle fatigue 
cracks that are believed to simulate natural low-cycle fatigue cracks is lacking.  Instead, the 
method focused on the natural flaws that produced indications that were detected by the 
ultrasonic inspection.  For each such indication, an estimate was made of the EFBH size.  Some 
of these flaws were then examined metallographically, with unusually thin layers removed 
between each metallographic examination, in order to determine the three-dimensional size and 
shape of the inclusion.  The EFBH size of each of the inclusions was studied and compared with 
the maximum cross-sectional area in a plane perpendicular to the detecting sound beam.  This 
ratio, known as the Effective Reflectivity, Re, (since it represented the difference between the 
response of the inclusion and a planar void) became part of a statistical database. 
 
It has been found that either Re or ln(Re) approaches normally distributed data for all 
combinations of transducer, material, and flaw types that have been studied.  The Re method has 
been used to generate curves showing the dependence on flaw size of the mean POD and the 
associated lower one-sided 95% confidence limit.  This was accomplished by combining this 
property with the assumption that ultrasonic response from inclusions is adequately described by 
                                                 
5 This model was selected based on empirical observation that it provided a better fit to experimental data than any 

of several competing models under review. 
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the same linear area-amplitude relationship [9] that is widely used to describe the response from 
FBHs.  Due to the relatively rare occurrence of inclusions in modern aircraft engine forged 
materials, the Re databases are, unavoidably, relatively small.  One consequence of this is that 
straightforward linear regression techniques, such as are used in the â versus a method, tend to 
produce physically implausible results.  This effect is countered by reliance on the physical 
model to help determine the regression line.  In other respects, it has many resemblances to â 
versus a. 
 
The Effective Reflectivity approach successfully circumvents the difficulty of generating 
synthetic flaws that accurately represent the properties of naturally occurring subsurface flaws, 
such as forging inclusions.  However, the major disadvantage is that the process of 
characterizing the parameters of natural flaws, that are used in estimating the POD, renders them 
unusable for further POD studies.  Thus, the redetermination of POD for each new circumstance 
can only be done by assembling new samples containing ultrasonic indications. 
 
5.1.3  Methods Using Signal and Noise Distributions. 

In all of the methods described above, background noise�from sources other than flaws�may 
appear to have been ignored.  In fact, noise only enters into the decision-making process when 
setting a practical lower limit to the level of the decision threshold that distinguishes the 
detection from nondetection.  The sources of this noise are usually known (for example, random 
electronic fluctuations in the instrumentation, ultrasonic reflections from grain-boundaries, or the 
effects of small instabilities in the position of the transducer with respect to the component 
undergoing inspection) but the distribution of the noise signals has rarely been studied.  Instead, 
what are in effect the typical noise amplitudes in the upper tail of such a distribution known as a 
result of prescanning a specific component or experience accumulated during the earlier 
inspection of numerous similar components.  This pseudopeak noise is used to set a practicable 
lower limit for the decision threshold, typically no lower than twice the peak noise, is a value 
that experience shows leads to an acceptably low level of false calls (i.e., occasions when the 
decision threshold is exceeded by a noise signal). 
 
The full distribution of noise in the detection process has been known for many years, but until 
the ETC program, appears to have been ignored in NDE applications.  Formal study of the 
theory of detection process started in the 1940s with the initial goal of optimizing the 
performance of radar [10] and sonar [11] detection systems.  For example, the initial theoretical 
formulation of the radar detectability target, postulated normally, distributed noise which was fed 
to a linear detector that produced a Rayleigh distribution for the envelope of the detected 
amplitudes.  Adding the target response signals to the noise was equivalent to increasing the 
scale parameter, σ, of the distribution.  This is illustrated in figure 4, where, conceptually, the 
three curves may be thought of as distributions of (1) noise, (2) small-target signals plus noise, 
and (3) larger-target signals plus noise.  For example, the POD for the small target is given by 
the proportion of the total area under the small-target curve that lies to the right of the decision 
threshold.  The proportion of the total area under the noise curve to the right of the decision 
threshold is equal to the probability of false alarm (PFA). 
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FIGURE 4.  EXAMPLE OF RAYLEIGH DISTRIBUTIONS 

WITH INCREASING SCALE, SIGMA 
 
The nature of the assumptions made about the distributions of signal and noise resulting from the 
early analyses of radar detectability may or may not be inappropriate to NDE processes.  Figure 
5 shows the consequences of a different set of assumptions, namely that the presence of a flaw 
modifies the location and not the scale of the distribution.  The interpretation is similar in figures 
4 and 5.  It may be seen that (1) lowering the decision threshold will increase the POD but at the 
expense of an increase in the PFA and (2) large targets will usually have higher POD than small 
targets.  The large targets clearly have a larger signal-to-noise (S/N) ratio than the small targets.  
Thus (once a suitable definition for it has been found6) the S/N ratio is a useful quantity by 
which to measure relative detectability. 
 
Rice, one of the primary developers of statistical detection theory, developed the concepts 
(presented in figure 5) into families of curves by plotting POD versus the S/N ratio with PFA as 
the independent parameter.  Peterson and Birdsall [12] subsequently plotted POD against PFA 
with S/N ratio as the independent parameter.  This latter format has become known as the 
Relative (or Receiver) Operating Characteristic (ROC).  It is often used as a convenient means 
for presenting empirical data in a wide range of fields (including cognitive discrimination 
between sensory stimuli) without considering the formulation of any underlying mathematical 
theory of detection.  Occasionally, ROC has been used in presenting the results from studies of 
NDE, especially in the nuclear power industry [13].  It has also been found useful as a means for 
presenting POD and PFA data generated from mathematical models of inspection processes [14]. 

                                                 
6 For figure 5, for example, a simple and useful definition is that the S/N ratio is equal to the ratio of the difference 

in means divided by the standard deviation (or the difference in location parameters divided by the scale). 
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FIGURE 5.  EXAMPLE OF GAUSSIAN DISTRIBUTIONS WITH INCREASING LOCATION 

(MEAN) AND CONSTANT SCALE (STANDARD DEVIATION) 
 

5.1.4  Limitations of Existing Methods. 

With the exception of the Re method, all existing POD methods use sample flaws designed to 
simulate naturally occurring flaws; the existence of which is known prior to attempting the POD 
data acquisition, and the size of which may be determined either before or after the data 
acquisition.  This represents a severe limitation for the application of these methods in the 
ultrasonic detection of subsurface flaws.  When such naturally occurring flaws have been 
examined in detail, they typically have complex shapes and chemical compositions; therefore, it 
is extremely difficult to accurately simulate them.  Acquiring this information about natural flaw 
morphology is difficult, time-consuming, and expensive.  The few natural flaw types that have 
been investigated in sufficient detail may serve as a baseline for establishing natural flaw 
properties and their distribution within the material.  The natural flaws have not been able to be 
characterized ultrasonically, or their accurate properties determined, until the sample is 
metallurgically sectioned.  Because the sample has been destroyed, it is not possible to use it 
again and perform an ultrasonic evaluation.   
 
Even if the natural flaw properties were known and an adequate simulation could be 
accomplished, the manner in which ultrasonic response depends on the flaw and material 
properties would necessitate locating such simulated flaws, representing a wide variety of flaw 
properties, at a wide variety of physical locations. 
 
Although the Re method avoids the need to make simulated flaws and intrinsically guarantees 
that POD data acquisition is based on the true properties of natural flaws, it is limited by the 
small number of detectable flaws.  Recent modifications to the method have included adding a 
provision of a statistically based means for compensating the hypothesized missing data.  
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However, the detailed metallographic examination of several thousand pounds of alloy would be 
necessary to determine if flaws actually escaped detection.  This is totally impracticable.  
Furthermore, while the linear area-amplitude response embodied in the simple FBH model is 
plausible for the small flaws found in forgings (and especially in powder metals), it is uncertain 
whether it can be applied to much larger flaws that may occur in billets. Therefore, a more 
satisfactory model is clearly needed. 
 
All the methods discussed share the major limitation that POD estimates strictly apply only to 
the circumstances under which the POD measurements took place.  This results from the current 
lack of methods for accurately predicting the effects on POD of changing any one (or more) of 
the numerous parameters that can affect detectability of flaws.  These include flaw, material, 
inspection equipment, calibration, and scanning parameters (and, at least for nonautomated 
inspections, human factors too).  This limitation means that every time one of these parameters is 
changed (such as a different type of instrument or transducer or a change in the scan increment 
for example) a new determination of POD is necessary.  While it has proved possible to do this 
in estimating POD for eddy-current inspection of low-cycle fatigue cracks, it is no simple matter 
for the Re method because the original sample defects would have been examined destructively 
in order to determine their true size and are no longer available for repeated use. 
 
It thus appears that several changes in POD methodology are highly desirable; in particular: 
 
• Necessary mathematical models should be developed (and then validated by experiment), 

that (1) would model the response of flaws that are comparable to or larger than the 
sound beam and (2) would provide a basis for predicting the effects of changing as many 
of the other inspection parameters as possible and 

 
• A means for taking PFA into account should be introduced while still maintaining 

statistical rigor. 
 
A combination of advanced modeling techniques with the S/N-based detection theory concepts 
originally developed for radar applications should provide a basis for producing accurate POD 
estimates over a range of conditions prevalent in practice. 
 
5.2  ETC IMPLEMENTATION. 

5.2.1  Background. 

As noted at the end of section 5.1.4, several changes need to be made to the POD methodology 
(while maintaining statistical rigor), i.e., a means for taking PFA into account and the 
introduction of the sophisticated models that describe ultrasonic signals.  In this section, the 
approach that was developed by the ETC is described. 
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However, before entering into a detailed discussion, some heuristics may be helpful in setting the 
stage.  A central difficulty in estimating the POD of naturally occurring flaws using existing 
empirical techniques is their complex shape and chemical compositions which render them very 
difficult to simulate in the laboratory, both because of lack of information about their natural 
morphology and the difficulty in producing laboratory samples which mimic that morphology.  
This difficulty is exacerbated by the extremely low frequency of occurrence of hard-alpha 
inclusions in the field, and the fact that these are typically destroyed in the process of identifying 
their origin. 
 
The general motivation for introducing advanced modeling techniques has been given in section 
5.1.4.  In the context of the small number of naturally occurring hard-alpha inclusions that are 
found, it can be put in another way, namely, that the physical understanding incorporated in a 
model allows one to extract as much information as accurately as possible from the available 
data.  A simple example illustrates the point, as shown in figure 6.  The first step in methods 
based on the full-flaw response (section 5.1.2) involves determining the distribution relating flaw 
response to flaw size.  Suppose one has a set of flaw response data which one wishes to relate to 
flaw size by a regression line and, as shown conceptually in figure 6(a), there is considerable 
scatter in the data.  Standard linear regression yields the fit shown, but it can be seen intuitively 
that there is considerable uncertainty in the slope of this regression result.  However, if one had 
further information such that the flaw response vanishes for zero flaw size and is proportional to 
flaw area, considerable improvements can be made, as shown in figure 6(b).  Taking size to be 
area and forcing the regression through the origin leads to a substantial reduction in uncertainty.  
In essence, through the use of this elementary model, one is able to require the data to define 
only a slope rather than a slope and an intercept7.  This idea is implicit in the Re approach.  The 
methodology developed in ETC Phase I, and to be described later in this report, represents a 
higher level of sophistication through the use of more accurate flaw response models.   
 

 
(a) (b) 

 
FIGURE 6.  INFLUENCE OF ADDITIONAL INFORMATION ON 

ACCURACY OF A LINEAR REGRESSION FIT TO DATA 

                                                 
7 When $a  is plotted versus a  in logarithmic space, the analogous constraint is that the plot has a slope of unity. 



The solid line represents the fit determined by regression, and the dashed lines denote the 
uncertainty in that fit.   
 
a. Standard regression has large uncertainty in slope.  
 
b. Model-derived knowledge that the line must pass through the origin substantially reduces 

the uncertainties in the slope. 
 
Some important distinctions can be made by using a physical model as part of the determination 
of POD which cannot be addressed using traditional approaches.  In an empirical test, when an 
indication is observed, there is no way to know whether it is because the signal from a flaw 
exceeded the threshold or if the indication is a consequence of noise or some other false cause.  
This uncertainty exists even when the probe is positioned so that a flaw is in the field of view.  
However, by using the information from physical models of the flaw response, it possible to 
directly consider this distinction. 
 
To facilitate the discussion of these two cases, the term probability of true detection (POTD) is 
introduced to indicate the situation when an indication is truly due to the signal from a flaw.  The 
term probability of an indication (POI) is used to indicate the situation when an indication is due 
to any cause.  As figure 7 shows, one would expect the POTD → 0 and the POI → PFA as the 
flaw size vanishes.  The difference between the POTD and POI is, of course, the probability that 
a signal is a reflection from a benign inhomogeneity such as a grain boundary. 

 
FIGURE 7.  A SCHEMATIC VIEW OF THE RELATIONSHIP BETWEEN POI AND POTD 

(The solid line represents POTD and the dashed line represents POI.) 
 
These concepts can be further clarified by making reference to the hypothetical distributions of 
flaw response plus noise that were presented in figures 4 and 5.  In the case illustrated by figure 
4, the response-plus-noise distribution is broadened and shifted by increases in the signal, 
whereas it is only shifted in the case illustrated in figure 5.  For either of these cases, the fraction 
of the area to the right of a specified threshold (decision threshold line shown in figures 4 and 5) 
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is considered the POI (since one does not know whether a response above threshold is due to the 
noise or the flaw response).  As flaw size approaches zero, the value that POI approaches will be 
determined by how rapidly the probability density function for the noise response drops to zero 
in the large response tail of the distribution.  For the case in which the distribution shifts without 
changing scale (figure 5), this limit can become quite small, producing a POI curve which 
qualitatively looks like the lower (POTD) curve in figure 7. 
 
There are alternative definitions of false alarms.  In this work, one used the definition that a false 
alarm occurs when the threshold is exceeded and no flaw is present.  An alternative view would 
say that a false alarm occurs when an acceptable size flaw will return an unacceptable signal 
(i.e., a signal exceeding threshold).  An illustration is found in figure 4, if one considers the small 
target to be acceptable and the large target to be unacceptable.   
 
This definition of false alarm plays a role in typical fracture mechanics applications.  For 
example, an engineer needs to define a flaw size that must be detected with 90% probability in 
order for a component, hypothetically containing such a flaw, to survive a given number of stress 
cycles without catastrophic failure.  An inspection threshold is selected corresponding to 90% 
POD for that size flaw and 10% of such flaws will likely be missed.  In addition, a significant 
proportion of smaller flaws (smaller than the critical size) will give signals that are larger than 
the inspection threshold.  In this situation, two approaches to the lifing calculation present 
themselves.  The engineer may make use of the entire curve of POD versus flaw size or choose 
to replace the POD curve by a step function at the critical flaw size, with POD going from zero 
for smaller flaws to 1 for larger flaws.  In the former approach, large signals from small flaws are 
just part of the total picture.  However, it appears that in the latter approach, an above-threshold 
signal from a below critical size flaw is truly a false call.   
 
This definition of a false call, as a unacceptable signal from an acceptable flaw, will not be 
considered in this work.  However, it should be emphasized that it could be readily considered 
when using basic tools, i.e., distributions of noise and signal plus noise, which were developed 
using the new methodology.  Indeed, it is the ability to address such questions as the distinction 
between POTD and POI and the definition of PFA that is one of the major advantages of the new 
methodology.  
 
Because existing tools have not been available to consider such issues, their distinctions have not 
been fully incorporated in the analyses of the POD by the life management community.  For 
example, Spencer used the term POD to include cases where the threshold is exceeded for 
reasons independent of crack lengths, i.e., false calls [15 and 16].  It is the impression of some 
members of the team preparing this report that POTD of the greatest interest to the life 
management community, but that POI may become so in the future.  A dialogue between these 
two communities is required to address such issues.  Until such time, the goal is to determine 
POTD.
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5.2.2  Distributions-of-Noise and Flaw-Plus-Noise Signals. 

For the NDE techniques that generate background signals with randomly varying amplitudes 
(e.g., ultrasonics, eddy-current, nonfilm radiography, etc.), there will be a distribution of signals 
that would be observed in the absence of a flaw (noise distribution).  The distributions of flaw 
signals that would be observed when a flaw is present and its response is modified by the noise 
(flaw-plus-noise distribution).  Conceptually, one can define the flaw-plus-noise distribution that 
corresponds to the distinction between a true defect or signal indication of a defect.  In the 
development of the methodology, the aim was to determine the distribution of true flaw signals 
in the presence of noise, which will be employed in the majority of this section.  The alternate 
definition, the distribution of indications, will be considered in section 5.2.11.  The distribution 
of flaw and noise signals would depend on the actual character of the flaw and its position in the 
material background.  Because of background noise, there is a chance that a flaw will not be 
detected (a miss) or that a noise signal could be mistaken for a flaw signal (a false alarm). 
 
Figure 8 shows examples of a possible distribution of noise signals and several distributions of 
flaw and noise signals.  POD and PFA are equal to the areas indicated by the shading.  A flaw-
plus-noise distribution describes the distribution of signals that one would see from a population 
of flaws having a particular set of describable characteristics, e.g., a size, measure.  When the set 
of characteristics changes, the distribution changes.  If circumstances allow, these distributions 
might be estimated empirically.  This might be practicable for surface-connected flaws (such as 
low-cycle fatigue cracks) where there may be an abundance of data relating observed signal-to-
flaw characteristics.  For other situations where it is difficult or impossible to obtain enough data 
to adequately characterize the observed signal�s relationship to flaw characteristics, 
physical/mathematical models (properly verified for the needed application) can be used with the 
limited available data to provide estimates of inspection capability.  Ultrasonic inspection for 
detection of subsurface flaws falls into this latter category. 

FIGURE 8.  EXAMPLES OF POSSIBLE DISTRIBUTION OF NOISE SIGNALS AND 
DISTRIBUTIONS OF FLAW-PLUS-NOISE SIGNALS, SHOWING POD AND 

PFA BY THE CROSS-HATCHED AREAS 

Maximum Peak-to-Peak Voltage in Gate

0 20 40 60 80 100

POD
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POD = 0.762
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<- Flaw&Noise Distributions
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5.2.3  General Approach. 

The general approach for assessing POD in this program was based upon the following steps: 
 
• A physical model, based on the theory of ultrasonic wave scattering, provides predictions 

for typical or expected response measurements for a given set of conditions. 
 
• Experimental data are used to compare the predictions of the physical model with actual 

recorded signals to determine the distribution of the deviations or residuals, which are 
represented by the symbol $ε .  A statistical model is used to quantify �deviations� 
between the physical model predictions and actual NDE measurements.  This statistical 
model for the deviations describes the sources of variability in ultrasonic signals that are 
not included in the physical model.  This model also provides a framework for predicting 
PFA and POD. 

 
• POD can be assessed for some specified ranges of inspection conditions, different 

materials, and different defect types.  Limitations of the approach are due to the breadth 
and adequacy of the physical and statistical models in which there are deviations between 
signal and the predictions made by the physical model.  

 
The steps in implementing the methodology are presented in more detail in figure 9.  Required 
input data are shown in the ellipses at the top, while input parameters defining the inspection 
problem are shown in the ellipses at the left.  A beam-centered flaw (BCF) provides a model for 
determining NDE capability, the POD for a flaw centered in the focal region of the beam (as 
would occur after peaking the signal) or a scan plan having very close-spaced positions between 
adjacent transducer pulses.  This statistical model is developed to describe the deviations 
between the (microstructure free) model predictions and the experimental data.  A similar 
approach is employed for coarser inspection-scan plans.  This suggests the possibility of the flaw 
being substantially off the beam center.  This report will present the methodology and discuss its 
application to FBHs and SHAs.  Application to naturally occurring flaw data awaits the 
conclusion of the Contaminated Billet Study (CBS).  
 
The general approach for assessing PFAs is based on the empirical determination of noise 
signals distribution from scanned data taken on a block for probe positions.  This is done far 
away from flaws, so there would be no effect from the flaw in the measurements. 
 



 
FIGURE 9.  PROPOSED ETC POD ESTIMATION METHODOLOGY 

 
Details of the determination of POD and PFA are presented in the following sections. 
 
5.2.4  Fixed and Random Factors Affecting Flaw and Noise Distributions. 

Conditional on a set of specified fixed factors that affect the signal strength, the cumulative 
probability distribution for flaw and noise signal can be expressed as 
 
 ),;()Pr( θxyFyY =≤  (3) 
 
with a corresponding probability density function f y x dF y x dy( ; , ) ( ; , ) /θ θ= .  This is the flaw 
and noise model identified in several boxes in figure 9. 
 
Here θ  is a vector of parameters that is, for the most part, independent of x , where 
x x x xFLAW NDE PART= ( , , ) is a vector of factors that affect the ultrasonic signal response.  In 
particular, 
 
• x NDE  contains NDE system factors like transducer, scan plan, and electronic system 

characteristics. 
 
• x PART  contains PART factors like part geometry, type of material being inspected, 

surface roughness, etc. 
 
• x FLAW  contains FLAW factors like size, density, shape, composition, degree of 

voiding/cracking, and orientation/position relative to the ultrasonic beam. 
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The ETC model for noise-only signals (UT signal when there is no flaw illuminated by the 
beam) is similar, except that the distribution would not depend on x FLAW .  To partition the 
factors into fixed factors and random factors, a signal-determining factor is taken to be fixed if 
either  
 
• the factor can be controlled in the inspection operation (e.g., frequency, transducer 

parameters, scan increment, pulse rate, gate width, etc.) or 
 
• it is desired to estimate POD as a function of the factor level (e.g., flaw size and depth). 
 
There are a number of other factors determining flaw-plus-noise signals that will be considered 
to be random during production/field inspection.  These include: 
 
• Details of microstructure, including position of a flaw relative to grain boundaries in 

material (material effects). 
 
• Flaw position relative to the ultrasonic transducer. 
 
• Flaw morphology, including shape, orientation, composition, and extent of voiding (e.g., 

real flaws tend to have complicated shapes). 
 
Referring again to figure 9, the strategy is to build the controlled inspection parameters into the 
ultrasonic model, that will 
 
• infer the effects of microstructure from the responses of nominally identical FBHs and 

SHAs. 
 
• treat variations in flaw position with the ultrasonic model. 
 
• infer the flaw morphology effects from experiments on naturally occurring defects. 
 
5.2.5  Measurements of Responses of Nominally Identical Flaws. 

Figure 9 shows that the measurement of the response of simulated or real flaws serves as the 
experimental input for the methodology.  In the case of FBHs and SHAs, the experimental input 
consists of the response measurement for a set of nominally identical scatters.  In all cases, the 
measurement corresponds to the peak-to-peak signal excursion within a time gate.  Testing the 
validity of that model can be done by comparing the means of this response to the ultrasonic 
model.  The deviations describe the material contributions of the variability flaw response.  The 
ultrasonic models and the details of these experiments are described in section 6 and appendix A.  
The following paragraphs identify those results which form the basis of the illustrative 
calculations.  
 
A factorial experiment was first conducted to obtain information on the distribution of flaw-plus-
noise signals for FBHs in titanium [17].  The experiments used for the computations described in 
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this report were conducted using 5-MHz transducers focused at depths of 0.5″, 1″, and 1.25″ and 
incident angles of -2.5°, 0°, and 5° with scan increments of 0.010″ in both the x and y directions.  
The sample was fabricated from a Ti-6Al-4V ring forging, machined into a flat plate and 
contained 64 FBHs (16 each of sizes nos. 1, 2, 3, and 4) with bottoms 1″ below the inspection 
surface.  Figure 10 presents C-scans for three of the cases.  Voltage readings were taken from 
each of the 16 nominally identical nos. 1, 2, 3, and 4 FBHs.  Full details are provided in 
appendix A. 
 

 
FBH C-scan: 5-MHz transducer no. 2, normal incidence, focused at 1″ depth on FBHs 

 

 
FBH C-scan: 5-MHz transducer no. 2, 5 deg. tilt in water, focused at 1″ depth on FBHs 

 

 
FBH C-scan: 5-MHz transducer no. 2, 5 deg. tilt in water, focused at 0.5″ depth above FBHs 

 
FIGURE 10.  C-SCANS FOR THREE OF THE CASES CONSIDERED IN THE FBH 

FACTORIAL EXPERIMENT 
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A similar factorial experiment was conducted to obtain information on the distribution of flaw-
plus-noise signals for synthetic hard-alpha inclusions (5.9% nitrogen by volume) in a Ti-6Al-4V 
alloy [18 and 19].  Voltage readings were taken on each of eight nominally identical nos. 2, 3, 4, 
and 5 cylindrical synthetic hard-alpha inclusions.  These were vertically oriented (i.e., the major 
axes were perpendicular to the inspection surface) with the nearest of their circular end faces 1″ 
below the inspection surface.  The synthetic hard-alpha inclusions were produced by procedures 
developed by Gigliotti, et al. [2] using hot isostatic pressing (HIP) consolidation procedures to 
blend a mix of Ti and TiN powder.  These inclusions were embedded in material taken from a 
Ti-6Al-4V ring forging via HIP bonding procedures.  Cylindrically shaped inclusions were 
inserted in matching holes drilled on the face of the Ti-6Al-4V block.  The sample was then 
covered with a matching piece of Ti-6Al-4V, the edges were welded together in vacuum, and the 
cover plate was HIP-bonded to the block.  The HIP bonding conditions were selected to assure 
good bonding, to minimize nitrogen diffusion from the inclusion, and to minimize changes in the 
phase volume and microstructure of the Ti-6Al-4V alloy.  Here the flaw size measure was 
adapted from the FBH convention where no. 2 is 2/64 in., no. 3 is 3/64 in., etc.  The part of the 
experiment used for the computations in this report was conducted using the same Panametrics 
5-MHz-focused transducers used in the FBH experiment as well as a special 10-MHz-focused 
transducer.  Data were taken at focal depths of 0.5, 1, and 1.25 inches and incident angles of 0°, 
2.5°, and 5° with scan increments of 0.005″ in both the x and y directions.  Full details are also 
provided in appendix A.   
 
Figure 11 provides an example of one of the C-scans for the SHA case.  From this, graphs of 
flaw response versus position were extracted and then compared to the predictions of the 
physical model.  Figure 12 shows a graph of a subset of that data.  Each frame shows signal 
strength (mV) for each of the eight nominally identical no. 5 SHA flaws as a function of the x-
dimension offset distance from the center of the flaw.  The seven frames in the vertical column 
show strengths as a function of the y-dimension offset.  Each column is for a different focal 
depth, as indicated.  The bold line shows the corresponding physical model predictions.   
 

 
5.9% N SHA C-scan(a): 10-MHz transducer no. 4, normal incidence, focused at 1″ depth on SHAs 

 
FIGURE 11.  C-SCAN OF SHA BLOCK WITH 10-MHz PROBE FOCUSED IN THE PLANE 

OF THE FLAWS AND ILLUMINATING THE BLOCK AT NORMAL INCIDENCE 
 



 

 
FIGURE 12.  PLOT OF DATA FROM THE 10-MHz-FOCUSED TRANSDUCER, 

ILLUMINATING THE 5.9% N SHA BLOCK AT NORMAL INCIDENCE 
 
It is through the analysis of the deviations between that data and model predictions that yields 
the statistical model for ε , the random SHA deviations, that was shown in figure 9. $
 
The plots shown are for the no. 5 cylindrical SHAs.  As described in the text, the columns 
correspond to different positions of the focal plane with respect to the depth of the end of the 
SHA nearest to the inspection surface.  The rows correspond to different offsets of the scan lines 
from the SHA centers. 
 
5.2.6  Modeling of the Generalized Signal/Prediction Deviations. 

The ultrasonic NDE model (UNDE model) will predict the flaw signal as a function of the fixed 
factors in x FLAW , x NDE , and x PART .  The physical model used here, which neglects any 
contributions of microstructural effects to the flaw signal, will be described in section 6 and 
appendix A [17, 18, and 20].  In this first implementation of the methodology, a statistical model 
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was used to describe deviations of the ultrasonic response from the physical model predictions. 
These variations were attributed to random factors related to microstructure, flaw fabrication 
measurement error, and possibly model errors.   
 
By examining the relative contributions of these potential sources of variability, the effects of 
measurement error on laboratory measurements can be controlled.  This variation can be reduced 
by carefully selecting parameters (e.g., sufficiently small scan indices and gate widths) or by 
accounting, in model predictions, for the off-center distance (note the beam off-center case in 
figure 9).  The degree of uncertainty associated with flaw fabrication variability is unknown at 
the present time.  Progress towards extending the physical models to predict microstructure-
controlled distributions of signals, which will reduce the need for empirical experiments, is 
discussed in section 9.4.  The degree to which the empirical variabilities observed in these 
laboratory tests can be generalized to full-scale components depends on the relative 
contributions of these effects.  This is planned to be examined further in future work. 
 
Y denotes the experimental voltage and 

(
Y 8 denotes the UNDE model prediction for Y.  The 

prediction 
(
Y  is a function of x FLAW , x NDE , and x PART  and provides a prediction which is 

initially assumed to be at the center (location) of the flaw-plus-noise signal distribution.  Note 
this assumption is not valid when the flaw signal approaches the noise level, which will be 
discussed in section 9.4.  The authors found it convenient to describe generalized deviations 
between the UNDE predictions and the actual data, using Box-Cox transformations, as 
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Here λ is a constant, known as the Box-Cox transformation parameter.  It is determined 
empirically from the data, where the aim is to select a value such that the transformed data 
follows a standard distribution, e.g., the normal distribution, with standard deviation independent 
of flaw size.  These generalized deviations provide the shape and spread of the flaw-plus-noise 
signal distribution.  The value of λ was also chosen empirically to equalize variance (with 
respect to flaw size) and otherwise make distributions, as much as possible, independent of the 
factors x x x xFLAW NDE PART= ( , , )

                                                

 that drive the UNDE model.  In the special case of λ=1, the 
deviations would be purely additive to the model prediction. 
 
This approach was applied to both the FBH and SHA data.  In each case, the shape of the 
distribution of the deviations was investigated for different values of the transformation 
parameter λ.  This same value of λ=0.3 was reported 
 
• by Meeker, et al. [20] as appropriate for stabilizing the distribution of generalized 

deviations from UT signals from flat-bottom holes,  

 
8 Read as �Y hook� or, more formally, as �Y breve.� 
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• by Meeker, et al. [21] as appropriate for stabilizing the distribution of generalized 
deviations from UT signals from synthetic hard-alpha inclusions, and 

• by Sarkar, et al. [22] for stabilizing the distribution of generalized deviations from UT 
signals from cracks in nuclear power plant steam generator tubes.   

 
Although these empirical studies do not mandate that λ=0.3 must be used, they do suggest that 
the result has significant generality.  Figure 13 shows normal, logistic, and largest extreme value 
(LEV) distribution probability plots for the deviations from the SHA case when the ultrasonic 
beam ensonified the flaw at normal incidence.  This figure indicates that normal and logistic 
distributions provide adequate distributional fits and that the variance of the deviations is 
approximately equal over the different flaw sizes.  Deviations for the no. 2-sized inclusions were 
omitted from this analysis because the UNDE model predictions for flaw responses were far 
below the background noise level.  Given these results, the normal distribution was used to 
describe the distribution of generalized deviations. 
 
The omission of the no. 2 FBH data from the boxplot in figure 13, because the UNDE model 
predictions were far below the background noise, assumes that the distribution so determined is 
for true detects.  In the limit when no flaw is present, equation 4 approaches the limit Υ λ λ/ , or 
Υ 0 3. / 0.3.  The implications of this on the prediction of POTD will be discussed in the next 
subsection. 
 

 
 

FIGURE 13.  DISTRIBUTION OF BEAM OFF-CENTER DEVIATIONS AFTER λ=0.3 
TRANSFORMATION FROM THE 10-MHz-FOCUSED TRANSDUCER, NORMAL 

INCIDENCE SCANS OF CYLINDRICAL, SYNTHETIC HARD-ALPHA INCLUSIONS 
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5.2.7  Basic Probability of a True Detection (POTD). 

An ultrasonic indication is said to occur when Y > ythresh, where Y is a measured gated peak-to-
peak amplitude and ythresh can be set according to specified user criteria (e.g., to make the 
probability of a false alarm essentially 0 or to minimize expected risk).  This event is called a 
detection if a flaw is present.   
 
For some applications, it may be of interest to compute POTD values for one or more sets of 
fixed values of all of the components in x x x xFLAW NDE PART= ( , , )

=

.  It is called the basic POTD.  
This corresponds to the probability of obtaining a flaw signal above the detection threshold when 
the transducer has a fixed position with respect to a flaw that has specified characteristics.  As 
will be discussed in section 5.2.8, the actual POTD observed in a production inspection will be 
determined by integrating a number of these factors corresponding to the quantities which are 
unknown in the inspection and hence treated as random variables.  Based on the Box-Cox 
transformation following the general model presented in section 5.2.6, the deviations are 
normally distributed.  Then 
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where Φ is the standard normal (Gaussian) cumulative distribution function and  µ g  and σ g  are 
computed from the available deviation data.  Then the possibility of a detection on any given 
reading is 
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As in Meeker, et al. [20], this is called the Basic POTD.  Note that the function g () in the 
calculation in equation 6 depends on x  through 

(
Y , the UNDE prediction for Y, is defined in 

equation 4.  The parameter λ in equation 4 was chosen to make the spread in the generalized 
deviations approximately constant across all values of x .  The parameter σ g  is a measure of 
spread in the generalized deviations.  Because the noise is generated by the material, it is 
reasonable to assume, for a material specimen with a given noise level, that σ g  would be 
constant at other x  values within the range of the data (depth, flaw size, tilt angle) and for other 
transducers that can be modeled adequately.  Relatedly, µ g  measures systematic model bias (i.e., 
tendency to be off in one direction or the other over different).  If the UNDE model provides 
adequate unbiased predictions, then one could set µ g=0.  In certain circumstances, however, a 
bias correction would be warranted. 
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It is useful to study the behavior of POTD (x ) as x xno flaw→ .  For simplicity, suppose that 
µ g = 0 (no model bias).  Then for fixed y , the limit of the generalized deviation thresh g ythresh( ) 

as x xno flaw→  is ythresh
λ λ/  for λ > 0.  Operationally, if σ g  is small (e.g., small enough so that 

( / ) / gythresh
λ λ σ > 4  then POTD(x) → 0 (approximately) as x xno flaw→ .  This would imply 

that, with a low level of (empirically measured) variability, any signals would be well below the 
threshold for small or nonexistent flaws.  If, on the other hand, σ g  is larger relative to 

y POTD x ythreshthresh g
λ λλ φ) 1→ − λ σ )/ (, (( / ) /  as x xno flaw→ .  For example, if 

( / ) / g .ythresh
λ λ σ = 1 645 then POTD x( ) 0.05→  as x xno flaw→ .  That is, if there is a lot of 

noise (being reflected in a large σ g ) then the model could predict an importantly large 
probability of a detect even if there is no flaw.   
 
It should be noted that an implicit assumption in this discussion is that the distribution fitted to 
the generalized deviations, when the signal is greater than the noise, applies to �true defects� 
when the signal drops below the noise level. 
 
5.2.8  POTD for Production Inspection. 

To predict POTD for production inspection, it will be necessary to account for random factors in 
the inspection process such as flaw position relative to the beam.  In an automatic system with 
gated detection, a volume of the material is interrogated with each pulse.  A flaw at any position 
within that volume can be detected, yet the strength of the signal will depend on the flaw�s 
position within the volume, being roughly proportional to the square of the local strength of the 
beam.  Thus, the longer the gate or the greater the scan increment, the broader the signal 
distribution due to the variation of ensonifying intensity.  This effect is taken into account by 
integrating over possible flaw positions.  This evaluation will require the evaluation of a joint 
distribution of random factors, this distribution is defined by the inspection process and system.   
 
To illustrate this, the ETC will show how to evaluate the effect on POTD by using different scan 
increments.  To keep the example simple, assume that the cylindrical synthetic hard-alpha flaw 
is, as in the experiment, vertically oriented (i.e., is oriented with its major axis perpendicular to 
the inspection surface) with the nearest of its circular end-faces 1″ below the surface and that the 
beam is focused with normal incidence at that depth.  To get POTD as a function of size a and 
scan increment, x a x xFIXED RAN( , , )=  was redefined, where x  is the two-dimensional position 
of the flaw in the block and x FIXED is a vector of all of the other factors in x , which are assumed 
to be fixed.  To compute POTD for fixed values of size a and ED, equation 6 was integrated 
with respect to  over the entire range of . 

RAN

x FIX
x RAN x RAN

 
 ( ) ( ) ( )∫= RANRANFIXEDRANxFIXED xdxxaPOTDxfxaPOTD

RAN
,,,  (7) 

 
where fxRAN

 is the probability density function of xRAN . 
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For the SHA experiment, with random x and y flaw position in the plane and fixed focal depth, it 
was assumed that flaw position is uniformly distributed between scan lines as shown in figure 
14.  In other words, it was assumed that the origin of the scan grid is positioned randomly with 
respect to the flaw location, with no preferred position.  Then all possible offsets of the flaw with 
respect to a scan grid can be considered by assuming the flaw to be uniformly distributed in the 
1/4 square shown in figure 14.  Because of symmetry and similarity, the POTD, in this case, is 
easy to compute by simply integrating over the 1/4 square shown in figure 14.  If the signal 
response pattern was nonsymmetric, one would need to integrate over one of the larger squares.  
Then 
 
 ( ) ( ) ( )∫∫= dydxyxxaPOTDyxfxaPOTD FIXEDFIXED ,,,,  (8) 
 
where f x y( , ) is a joint probability density function describing the x-y position of a flaw relative 
to the scan lines.  Physically, a uniform distribution should provide an adequate description for 
this distribution for the reasons given above. 
 

 
 

FIGURE 14.  SCHEMATIC UT SCAN PLAN WITH COARSE INCREMENTS 
 
This idea can easily be extended to randomness in the depth of the flaw (so focal depth, now 
denoted by z, is removed from x FIXED and used as a variable of integration).  Finding POTD in 
this case will require integration over a joint distribution of x-y flaw position relative to scan 
lines and flaw depth (z) relative to focal depth.  In particular,  
 
 ( ) ( ) ( )∫∫∫= dzdydxzyxxaPOTDzyxfxaPOTD FIXEDFIXED ,,,,,,,  (9) 
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Here f x y z( , , ) is a joint probability density function describing the x-y position of a flaw relative 
to the scan lines and the depth (z) relative to the focus depth.  The x-y part of the distribution 
could be expected to be uniform as discussed above.  The range of the z-part of the distribution, 
also expected to be uniform, would correspond to the depth range from which signals are 
accepted in the gate.  In some situations, however, a nonuniform distribution could be expected 
in the depth dimension, depending on the distribution of flaws in material being inspected (e.g., 
there might be a higher probability to have flaws on or near the surface or in some other region, 
as determined by the processing history).   
 
5.2.9  Probability of a False Alarm (PFA). 

The probability of a false alarm can be defined as the probability of an above-threshold reading 
when there is no flaw.  Under our model, the probability of such a false alarm on any given 
reading is an analogy to equation 6, is 
 

 ( ) ( )
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where gn is the distribution of noise.  In this work, based on empirical data (presented in section 
9.2), gn  has been taken to be a lognormal transformation that can be used to represent the noise 
in the sample of interest.  Section 9.3 discusses more sophisticated approaches that should be 
examined in future programs.  The statistical model and parameters µ gn  and σ  are the means 
and standard deviations of the lognormal distribution representing the noise but using an average 
of the voltage signals over several different regions that do not contain flaws.  Note that the 
statistical model for the noise is the limit λ=0 of the Box-Cox transformation. 

gn

 
5.2.10  Relative Operating Characteristics (ROC). 

As noted in section 5.1.3, ROC curves are a simple way to display POTD and PFA information 
simultaneously and are a means to compare different inspection methods/conditions without 
having to specify a threshold.  To compute an ROC curve, choose a fixed flaw size a, Vary 
ythresh, compute PFA from equation 10, POTD from equation 7, and plot the resulting set of 
points as a curve on a graph of POTD versus PFA.  Repeat this process for different values of 
size a, generating separate ROC curves for each value of a. 
 
Figure 15 illustrates ROC curves and their utility.  For a very low threshold, one exacts high 
values for both POTD and PFA and, as the threshold is increased, both POTD and PFA will 
decrease.  A good NDE technique will be differentiated from a poor NDE technique by using a 
form of this function.  PFA could be substantially lowered before POTD was significantly 
affected.  On the other hand, if the test were essentially a guess, both would react in the same 
way. 
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FIGURE 15.  RELATIVE OPERATING CHARACTERISTIC CURVES 

 
5.2.11  Probability of Indication (POI). 

In some situations, it is more meaningful to compute the POI than POTD.  POI is the probability 
that the UT signal exceeds the threshold, regardless of whether the signal is a reflection from a 
flaw or a result of noise.  Thus, POI can be thought of as a function of POTD and PFA.  The 
following is an ad hoc equation for computing POI:  
 
  (11) ( ) ( ) ( )aPOTDPFAPFAaPOI −+= 1
 
This satisfies the requirement that POI→PFA in the limit x x no flaw→  and POI→POD when 
signal-to-noise ratio is good (PFA<<1).  Equation 11 is a rigorous result when the processes 
determines that noise and signal exceed the threshold and are independent.  Otherwise, it is a 
convenient approximation that smoothly connects the limiting cases of noise for both small and 
large signal detection.  POI is a convenient way of presenting both the PFA and POTD 
information in a format which is of the greatest value. 
 
5.2.12  Summary of Terms. 

In this section, a number of previously defined terms are repeated for easy reference.  The 
following probabilities have been defined. 
 
• POTD�The probability that threshold is exceeded by a signal from a flaw. 
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• POI�The probability that threshold is exceeded when a flaw is present, but not necessarily 
due to the signal from that flaw. 

 
• PFA�The probability that the threshold is exceeded when no flaw is present. 
 
In addition, other key terms are presented that will be used throughout the report.  They are to be 
understood in the context of this work. 
 
• Statistical Model� A description of a relationship between input parameters and a 

response built from empirical data. 
 
• Physics-Based Model� A description of a relationship between input parameters and a 

response based on an understanding of the physics and an evaluation of mathematical 
expressions based on that understanding. 

 
• Simulation�The prediction of the result of an experiment based on a physics-based 

model and the specification of numerical values of the input parameters. 
 
• Test�Performing a controlled experiment in which physics-based model simulations are 

compared to experiment, under controlled conditions, for the purpose of determining the 
accuracy of the model. 

 
• Model Verification�Establishing the accuracy of a physics-based model through a series 

of tests in which simulations are compared to measurements with well controlled 
parameters. 

 
• Productionization of POD Predictions�The process of taking into account those effects 

that contribute to flaw response variability that cannot easily be quantified by simulations 
of well understood physical phenomena.  Included are the effects of input parameters 
variations that are not fully controlled in the production environment. 

 
• POD Methodology Validation�The process of establishing that the POD methodology 

makes predictions that properly reflect reality and provides estimates appropriate for use 
by the life management community. 

 
6.  SIGNAL MODELING AND VERIFICATION. 

An important aspect of the new methodology is using physical models to predict the flaw signals 
under the influence of various inspection and material parameters, as noted by 

(
Y  in the previous 

section.  This approach reduces the empirical experimental effort and provides a basis for 
considering cases not covered by the experiment.  In principle, any physical model for the flaw 
response would be satisfactory if it describes with sufficient accuracy the dependence of the flaw 
response on the inspection and material parameters of interest and can be accurately evaluated on 
computer platforms that are available to NDE personnel at the OEMs.   
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The following model requirements have been established to quantify these objectives:   

a. The model must be able to predict the absolute level of the flaw response, as influenced 
by the geometry of the part; the frequency, diameter, and degree of focusing and 
efficiency of the transducer; and the position of the beam with respect to the flaw.  This is 
necessary so that the model can capture the dependence of the flaw response on x NDE  and 
x PART .   

b. The model must be able to predict within 3 dB of careful, laboratory experiment 
observations.  This target was established by the team based on their feeling that this was 
at least as good and probably better than the reproducibility of typical industrial 
inspections (arguments that the variability of industrial practice is as high as ±5 dB or 
±6 dB were presented).  Any greater accuracy is not supported by the industrial practice 
that is being described.   

c. In order to be useful to engineers in typical NDE groups of the OEMs, it is necessary that 
software be able to run in reasonable time on available computing platforms, which are 
typically personal computers, if it is to help engineers in typical NDE groups of the 
OEMs.  Workstations are often available to individuals involved in life management but 
generally not to the NDE staff.   

 
A wide variety of modeling approaches are available which satisfy the first two requirements, 
ranging from finite element and finite difference schemes to a various analytical approximations.  
The third requirement, c., must be considered in light of the more numerically intensive finite 
element and difference techniques and favors using analytical approximations which can 
decrease run times by orders of magnitude.  However, the requirement of 3-dB accuracy then 
demands careful experimental validation of the flaw response models. 
 
Appendix A describes the models that are used to predict the response of flat-bottom holes and 
synthetic hard-alpha inclusions.  Also included are the results of extensive experimental 
verification efforts.  These models do not take into account the variability of flaw response, as 
influenced by material microstructure.  As noted in section 5.2, this is taken into account 
empirically by comparing the model predictions to experimental observations on sets of 
nominally identical reflectors.  Section 9.4 presents advances in modeling these important 
aspects of the physics.  Using these tools in future programs will further reduce the need for 
expensive and time-consuming experiments to determine POD. 
 
7.  RESULTS OBTAINED WITH THE NEW METHODOLOGY. 

Using the new methodology described in section 5.2 and incorporating the signal modeling 
procedures mentioned in section 6 and described in appendix A, a number of POD (both POTD 
and POI) calculations for FBHs and SHAs have been performed.  These, as well as some new 
concepts implied by ETC�s approach, are described in the following subsections. 
 
Before presenting these results, however, it may be worthwhile to review the meaning of the 
POTD.  The procedure described in section 5.2 can be summarized as follows.   
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Starting with a physical model for the noise-free case, the flaw response was predicted.  Then, by 
comparing to experimental data, which included the effects of additive noise and other 
microstructural influences on the flaw response (such as those that might modify the beam 
profile), a statistical model for the microstructurally induced deviations of the actual response 
from those predicted by the physical model was developed.  It is the combination of these 
statistical and physical models which determine the PDF, from which the POTD is predicted.  
The statistical model was developed based on data for cases in which the flaws were clearly 
detected, i.e., the events were true defects.  Hence, the distribution so determined is taken to be 
the distribution of true defects, i.e., the POTD (a).   
 
Within this framework, the POI is estimated using equation 11.  In future work, the development 
of a physical model, which will explicitly include the effects of noise, should be considered.  
This will allow the POI to be directly predicted.  Section 9.4 will describe some preliminary 
results which lay the foundation for such an approach. 
 
7.1  FLAT-BOTTOM HOLES. 

This section briefly describes one of the predictive examples computed from the FBH 
experiment.  The plots in the top row of figure 16 show POTD (a) and ROC curves for normal 
incidence inspection with a 5-MHz transducer (no. 2 in table A-2).  The parameters on the curves 
are the threshold levels.  In typical life management procedures, the threshold is selected to 
ensure that the required POD is realized for flaws of the critical size.  Other scenarios might be 
encountered in other applications.  Here it has been assumed that the probe is focused directly 
on the flaw, an assumption that will be relaxed in the discussion of the SHA inclusions.  These 
are plots of the basic POTD, as defined in section 5.2.7.  The flat-bottom holes have shown to 
be strong UT reflectors because they produce very high signal-to-noise ratio, even for the 
small 1/32″ diameter (no. 1) holes (see figure 10).  Therefore, in order to get ROC curves with 
reasonable shapes, (i.e., POD = 1 for no. 1 holes, except when the threshold was well above the 
noise), the POTD for smaller holes was predicted by extrapolating the UNDE model predictions.  
 
The bottom row shows similar curves predicted for an inspection with the same transducer tilted 
5° from normal.  The POTD curves for a specific threshold are shifted to larger flaw sizes since 
the signals were reduced by the tilt of the probe.  Quite surprising, however, was the fact that the 
ROC curve actually moved closer to the ideal.  For a given POTD and reflection size, the false 
alarm rate was reduced.  This indicates better inspection reliability for the tilted transducer. This 
result was initially felt to be counter intuitive.  However, examination of the details of the 
calculation revealed that the noise level went down more rapidly than the signal level when the 
transducer was tilted, effectively improving the signal-to-noise ratio.  This is not a general result, 
but depends on such factors as the frequency and FBH diameter.  Further calculations have 
shown that, the larger the FBH diameter, the less pronounced is this effect since the reflectivity 
from the hole drops off more rapidly with angle as the hole diameter is increased.  Also, this 
result is not achieved when the probe is tilted in the orthogonal plane. 
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FIGURE 16.  BASIC POD (a) AND ROC FUNCTIONS FOR TWO DIFFERENT SETS OF 
INSPECTION CONDITIONS USING TRANSDUCER NO. 2  

(Flaw diameter is given in units of flat-bottom hole size in which a no. 1 flat-bottom 
hole is 1/64 inch.  The parameters on the POD (a) curves indicate the threshold level. 

Flaw sizes are in units of 1/64 inch.) 
 
It is of interest to validate these predicted improvements experimentally with a probe tilt.  
However, this is best done for SHAs for which the signal-to-noise ratio is closer to unity.  
Results will be presented for that case in the next subsection. 
 
7.2  SYNTHETIC HARD-ALPHA INCLUSIONS. 

This section briefly describes several predictive examples showing how the methodology can be 
used to predict POD under different inspection conditions for the SHAs (different transducers, 
scan plans, etc.).  Experimental results also presented here will validate the methodology�s 
predictions of improvement in POD with a probe tilt.   
 
Figure 11 shows a C-scan as obtained with a 10-MHz transducer (no. 4 in table A-2), 
illuminating the sample at normal incidence and focused at the 1″ depth of the SHAs.  Motivated 
by the predicted improvement in ROC for FBHs when the probe was tilted, an additional set of 
C-scans were obtained.  Figure 17 shows the experimental configuration.  The same probe was 
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tilted 5° in the water.  Since the SHA sample had been fabricated from a ring forging in which 
the microstructure, and hence the noise, is highly directional, the probe was tilted 5° with respect 
to the normal in each of four azimuthal directions.  The resulting C-scans are shown in figure 18.  
Consistent with the predictions for the FBH case, the POD is improved when the probe is tilted 
in one plane (scans (c) and (d)) but degraded when the probe is tilted in the other plane (scans (b) 
and (e)). 
 

 

5 0 

scan (b) 

scan (d) 

scan (c) scan (e) azimuth 

 
 
FIGURE 17.  EXPERIMENTAL CONFIGURATION FOR STUDYING EFFECT OF PROBE 

TILT ON POTD OF SHAs 
(The four azimuthal orientations of the tilted probe are indicated as scans (b)-(e).  

Scan (a), corresponding to normal incidence, is not shown for simplicity.) 
 
The Basic POTD predictions that used the SHA experiment data (no. 4 in table A-3) are shown 
in figure 19.  The data was generated by probes using normal incidence and focused directly on 
the top surface of a norminally similar synthetic hard-alpha flaw.  It is assumed that because the 
gate width is very small, only a thin slab of material is inspected.  In contrast, figures 20 and 21 
show POTD functions for 0.030″ (30-mils) and 0.060″ (60-mils) scan increments.  In these 
figures, the focal depth was held constant and the beam was focused on the flaw.  The figures 
quantify that POTD is degraded as the scan increments increase. 
 
Corresponding to figures 20 and 21, figures 22 and 23 show ROC curves for the SHA inclusions 
for 30- and 60-mil scan increments.  These figures allow a comparison to be made without 
having to adjust the threshold differences.  Comparing figures 22 and 23 clearly shows how 
increasing the scan increment to 60 mils seriously degrades inspection capability.   
 
Similar to figure 20, figure 24 illustrates the difference caused by introducing a gate width that 
accepts signals from a slab of material 0.5″ thick.   
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5.9% N SHA C-scan (b): 10-MHz transducer no. 4, 5 deg. tilt in water, focused at 1″ depth on SHAs 

 

 
5.9% N SHA C-scan (c): 10-MHz transducer no. 4, 5 deg. tilt in water, focused at 1″ depth on SHAs 

 

 
5.9% N SHA C-scan (d): 10-MHz transducer no. 4, 5 deg. tilt in water, focused at 1″ depth on SHAs 

 

 
5.9% N SHA C-scan (e): 10-MHz transducer no. 4, 5 deg. tilt in water, focused at 1″ depth on SHAs 

 
FIGURE 18.  C-SCANS OF SHA BLOCK WITH 10-MHz PROBE FOCUSED IN THE PLANE 

OF THE FLAWS AND ILLUMINATING THE BLOCK AT A 5° TILT AND FOUR 
AZIMUTHAL ORIENTATIONS (see figure 17). 

(The C-scan obtained at normal incidence, scan (a), was shown previously in figure 11.) 
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FIGURE 19.  BASIC POTD FOR A 10-MHz TRANSDUCER AT NORMAL INCIDENCE, 

POSITIONED DIRECTLY OVER, AND FOCUSED AT THE SAME DEPTH AS THE 
SYNTHETIC HARD-ALPHA FLAW 

 
FIGURE 20.  POTD FOR A 10-MHz TRANSDUCER AT NORMAL INCIDENCE, FOCUSED 
AT THE SAME DEPTH AS THE SYNTHETIC HARD-ALPHA FLAW, ASSUMING 30-mil 

SCAN INCREMENTS AND A VERY NARROW GATE WIDTH 
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FIGURE 21.  POTD FOR A 10-MHz TRANSDUCER AT NORMAL INCIDENCE, FOCUSED 
AT THE SAME DEPTH AS THE SYNTHETIC HARD-ALPHA FLAW, ASSUMING 0.060″ 

(60-mil) SCAN INCREMENTS AND 0 µs GATE WIDTH 
 

 
FIGURE 22.  ROC FOR A 10-MHz TRANSDUCER AT NORMAL INCIDENCE, FOCUSED 

AT THE SAME DEPTH AS THE SYNTHETIC HARD-ALPHA FLAW, 
ASSUMING 0.030″ (30-mil) SCAN INCREMENTS 
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FIGURE 23.  ROC FOR A 10-MHz TRANSDUCER AT NORMAL INCIDENCE, FOCUSED 

AT THE SAME DEPTH AS THE SYNTHETIC HARD-ALPHA FLAW, 
ASSUMING 0.060″ (60-mil) SCAN INCREMENTS 

 
FIGURE 24.  POTD FOR A 10-MHz TRANSDUCER AT NORMAL INCIDENCE, 

ASSUMING 0.030″ (30-mil) SCAN INCREMENTS AND A GATE WIDTH OF 0.5 inch 

 41



7.3  COMPARISON OF TWO TRANSDUCERS. 

Figure 25 presents a comparison of POI for a 5- and a 10-MHz transducer.  The POIs were 
computed using normal incidence, assuming 0.020″ (20-mil) scan increments and a gate width of 
0.25″ with the threshold adjusted so that PFA=0.02 for both transducers.  The comparison clearly 
shows that, when inspecting with the 10-MHz transducer, there is a much higher probability of 
an indication occurring when flaws are present with sizes in the no. 1 to 2 range.   
 

 
 

FIGURE 25.  COMPARISON OF POI FOR TRANSDUCER NO. 2 (5 MHz) AND 
TRANSDUCER NO. 4 (10 MHz) USING NORMAL INCIDENCE, ASSUMING 0.020″ 

(20-mil) SCAN INCREMENTS AND A GATE WIDTH OF 0.25 inch WITH THE 
THRESHOLD ADJUSTED SUCH THAT PFA=0.02 

 
If one was to use a POI curve (rather than a PODT curve), one would only see whether there 
would be an indication of a flaw.  They would not be able to say for certain if a flaw detection 
had occurred with the 10-MHz transducer.  However, the underlying information provided by 
the new methodology, specifically the POTD curve not shown here, does support the conclusion 
of better detectability with the 10-MHz transducer.  The ability to distinguish between an 
indication and detect of a flaw is one of the strengths of the model-based approach. 
 
7.4  UNCERTAINTY BOUNDS. 

Given the large amount of data used to estimate the distribution of generalized deviations, the 
dominant source of uncertainty in the predictions came from errors in the UNDE model.  Since 
improvements were made to the UNDE model, these model predictions are estimated to be 
accurate within ±3 dB, as supported by the verifications reported in appendix A.  As noted in 
section 6, this is at least as good, if not better, than the reproducibility of typical industrial 
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practice.  Figure 26 is an example of a calculation of uncertainty bounds, assuming this ±3-dB 
range in predicted signal amplitudes (consistent with the results reported in appendix A) and the 
POTD evaluation algorithm is evaluated for all possible signal predictions within a ±3-dB 
tolerance band.  These bands can be viewed as the result of a graphical sensitivity analysis which 
outlines the potential error in the POTD predictions due to a possible inadequacy of the model.  
If one could confidently say that the predictions of the signals are within ±3 dB, then they could 
reasonably conclude that the actual PODT is within these uncertainty bounds. 

 
FIGURE 26.  POTD FOR A 10-MHz TRANSDUCER AT NORMAL 

INCIDENCE, ASSUMING 0.030″ (30-mil) SCAN INCREMENTS AND A 
GATE WIDTH OF 0.5 inch, SHOWING UNCERTAINTY BANDS FOR 

±3 dB UNCERTAINTY IN THE MODEL PREDICTIONS 
 
8.  COMPARISON OF NEW METHODOLOGY PREDICTIONS FOR FBH POD TO 
PREDICTIONS OF OTHER METHODS OF ANALYSIS. 

The flat-bottom hole data obtained in the development of the methodology are very well-
behaved in the sense that the scatter is not too large and, hence, they can be easily fit to a curve, 
such as a regression line.  This facilitates the use of alternative methods of analysis that are 
usually found to be difficult to apply to detectability data from naturally occurring subsurface 
flaws, which exhibit considerably more scatter.   
 
Comparison of the predictions of the new and old methodologies, based on the same data, 
constitutes an important verification procedure.  As discussed in section 5.1, these alternative 
probability of detection methods may be conveniently considered as belonging to one of two 
groups: 
 
• Qualitative Response: (measurements of the proportion detected for flaws of a single size 

or as a function of flaw size) 
− ASNT Recommended Practice 
− USAF/University of Dayton Research Institute (UDRI) PF program 
− Empirical application of the Relative (or Receiver) Operating Characteristic 
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• Quantitative Response: (measurements of signal amplitude as a function of flaw size) 
− USAF/UDRI a  versus a  (a-hat versus a) program $
− GEAE Effective Reflectivity method (original and modified versions) 

 
This section provides examples of applications of several of these methods to the FBH data.  In 
all of these applications, it has been assumed that the size of the FBHs is exactly determined by 
the nominal values, e.g., all no. 2 FBHs are treated as having a diameter of 2/64″, etc.  (It must 
be remembered that this prior knowledge of the flaw sizes is not available when studying 
naturally occurring subsurface flaws.)   
 
Attempts were also made to conduct similar studies based on the SHA data.  However, sensible 
results were not obtained with the existent methodologies.  This illustrates the greater versatility 
of the new methodology. 
 
8.1  QUALITATIVE RESPONSE (HIT-MISS) METHODS. 

8.1.1  American Society of Nondestructive Testing Recommended Practice. 

Although the full title of reference 6 reflects the aerospace industry background to this 
document, its statistical approach is not limited to specific aerospace applications.  The goal was 
to determine the limiting flaw size that could be detected given the probability of detection and 
the percentage of confidence in that probability.  The hit-miss approach focuses attention on 
flaws of a single size or size interval.9  This is based on measuring the response of the 
proportional group of flaws that is detected by an inspection. 
 
The formulas of this method use the percentiles of the F-distribution [23] as the basis for 
calculating the one-sided confidence limits.  In its simplest form, the ANST Recommended 
Practice identifies pairs of values for trials (i.e., sample sizes) and successes (detections) 
necessary to establish a 90% POD at eight different confidence levels, ranging from 50% to 
99.9%.  For example, detection of seven flaws out of a sample of seven is enough to demonstrate 
90% POD at 50% confidence, whereas it is necessary to detect 29 out of 29 to demonstrate 90% 
POD at 95% confidence.  If a few flaws are missed, the total number of trials increases rapidly, 
i.e., demonstrating 90% POD at 95% confidence requires the detection of 45 out of 46 flaws or 
59 out of 61. 
 
The F-distribution may give a more detailed analysis that will help to understand the properties 
of specific data sets.  For example, it is possible to evaluate, as a function of the number of trials 
and successes, the POD for a specific confidence level or the confidence level for a specific 
POD.  The former technique has been applied to the three sets of no. 1 FBH data; results 
expressed in terms of the probability of detecting no. 1 FBHs are shown in figure 27.  There are 
six curves, one for each of three transducers for a 50% confidence level and a 95% confidence 
level.  One would expect (1) that the POD for a given size reflector would decrease as threshold 
increases, (2) that the POD would be lower if a higher confidence is required, and (3) that the 
                                                 
9 If flaws of different sizes are used, the procedure leads to certification �at the�flaw size interval,� and the practice 

illustrates POD plotted at the center of such an interval (see figure 4-1 of reference 6).  This appears to be 
dangerously nonconservative since it tends to over represent the POD at the lower end of such an interval. 
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POD would be higher for a transducer producing a stronger signal.  All of these general 
expectations are born out by these specific calculations.  As the inspection (accept/reject) 
threshold is increased from 300 to 500 mV, the POD for transducers 1 and 2 falls in steps from 
0.957 at 50% confidence and 0.829 at 95% confidence to zero.  The POD for transducer 3, 
because of its higher response values, stays at the initial values (and then falls to zero as the 
threshold is increased from 620 to 890, which is off of the scale of this figure). 
 

 
FIGURE 27.  AMERICAN SOCIETY FOR NONDESTRUCTIVE TESTING 

RECOMMENDED PRACTICE POD FOR NO. 1 FBHs AT TWO CONFIDENCE LEVELS AS 
A FUNCTION OF THRESHOLD LEVEL 

(The solid, dashed, and dotted curves refer to transducers 1, 2, and 3 respectively.) 
 
This procedure is not well-suited to plotting POD as a function of flaw size for this data set10.  
For the purposes of comparison with other methods of analysis, the values of POD for a 
threshold of 400 mV are listed in table 2. 

 
TABLE 2.  PROBABILITY OF DETECTING NO. 1 FBHs WITH A 400-mV THRESHOLD 

 
 Transducer No. 1 Transducer No. 2 Transducer No. 3 
Confidence 0.50 0.95 0.50 0.95 0.50 0.95 
POD 0.531 0.333 0.714 0.516 0.957 0.829 

                                                 
10 By grouping the data into intervals that include more than one size of FBH, it is possible to show that POD 

increases with increasing FBH size � for example, with a threshold no higher than 318 mV, 32 out of 32 FBHs in 
an interval, including no. 1 and 2 sizes are detected; for PODs of 0.979 and 0.911 at 50% and 95% confidence, 
respectively, values that are higher than the 0.957 and 0.829 derived from detection of 16 out of 16 no. 2 FBHs 
alone.  However, this increase vanishes as soon as the threshold is raised high enough for a single no. 1 FBH to 
be missed.  It is then better to confine attention to separate intervals containing either no. 1 or 2 FBHs. 
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8.1.2  USAF/UDRI PF PROGRAM. 

This software program, written for the USAF at the UDRI [4, 7, 24, and 25], is intended to serve 
as an analysis of pass/fail data, i.e., for detection data, distinguishing only by whether known 
flaws are detected (pass or hit) or not detected (fail or miss).  The PF program assumes a 
lognormal11 model for the POD(a) function, where a is the flaw size and calculates maximum-
likelihood estimates of the parameters of this model.  For this program to run properly, the data 
set must include small always undetected flaws, large always detected flaws, and an intermediate 
range in which some flaws are detected and others are missed [7]. 
 
For the present FBH data, 77 threshold values were tried at 50-mV intervals from 300 to 
4150 mV, using data from transducer no. 2.  The PF program failed to determine parameters for 
the POD(a) model for 68 of these thresholds.  It ran, with limited success, 1150 mV, 3850 mV, 
and 7 thresholds in the range between 2250 and 2550 mV.  This generated model parameters 
from which mean, 50% confidence POD could be calculated as a function of flaw size.  
Examples of POD curves that were generated from successful conditions are shown in figure 28.  
The output did not include 95% confidence estimates, �due to inadequate fit to the POD 
model�12. 
 

 
FIGURE 28.  USAF/UDRI PF ANALYSIS POD FOR PLANAR VOIDS BASED ON PF 

ANALYSIS (TRANSDUCER NO. 2)  (Note:  1000 sq. mils = 0.001 in.2) 
 

                                                 
11 Earlier versions of the PF software may have used the log-logistics function, which gives almost identical results. 
12 Berens cautions that this indicates that �the log odds model is not acceptable for the data set� and that under these 

circumstances �the parameters of the POD function are output for reference.� 

 46



Table 3 compares results from the analyzed data of transducer no. 2 with the ASNT 
Recommended Practice and the PF program.  Because of the restriction imposed by the ASNT 
Recommended Practice, this comparison was limited to listing the values of the probability of 
detecting no. 3 FBHs (i.e., planar voids of area 0.001726 in.2).  For a given threshold, (and 
specifically for this set of data), the PF program indicates slightly higher values of mean POD, 
but the ASNT Recommended Practice yields results over a wider range of threshold and 
confidence conditions. 
 

TABLE 3.  PROBABILITY OF DETECTING NO. 3 FBHs WITH TRANSDUCER NO. 2 
 

 POD From PF POD From ASNT 
Threshold 

(mV) 
50% 

Confidence 
95% 

Confidence 
50% 

Confidence 
95% 

Confidence 
2200 N/A N/A 0.957 0.821 
2250 0.883 N/A 0.836 0.656 
2300 0.804 N/A 0.775 0.583 
2350 0.559 N/A 0.531 0.333 
2400 0.379 N/A 0.347 0.178 
2450 0.128 N/A 0.103 0.023 
2500 0.128 N/A 0.103 0.023 
2550 0.058 N/A 0.042 0.003 
2600 N/A N/A 0.000 0.000 

 
8.1.3  Empirical ROC Approach. 

The relative (or receiver) operating characteristic [12] was originally conceived in conjunction 
with the development of signal detection theory as a way to present data necessary to evaluate 
the process of choosing between two alternative responses.  The ROC format has also found 
application, without particular regard to its detection theory origins, as a convenient way to 
simultaneously display POD and PFA data.  When it is presented this way, it has sometimes 
been distinguished as an Empirical ROC application. 
 
Since the current FBH data set is confined to detection data and contains no information 
pertinent to PFA, it is not a useful application for the ROC approach. 
 
8.2  QUANTITATIVE RESPONSE METHODS. 

8.2.1  USAF/UDRI $a  Versus a Program. 

This software program, written for the USAF at the UDRI [4, 7, 24, and 25], is intended to 
analyze detection data in the form of output signals�the amplitudes of which are (increasing) 
functions of the flaw size.  By convention, the response is designated as â or Â (or �A-hat�) and 
the size is designated as a or A.  The program assumes a linear dependence of ln(â) on ln(a) and 
calculates maximum-likelihood estimates of the parameters β0, β1, and ε for the linear regression 
equation: 
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 ln(â) = β0 + β1*ln(a)+ ε (12) 
 
The program further assumes that the residuals, ε, are normally distributed with a mean of zero, 
and the standard deviation, σ(ε), is independent of a (i.e., the residuals are homoscedastic).  The 
POD(a) function then has the form 
 
 POD(a) = Φ[{ln(a) - µ}/ σ]  (13) 
 
where Φ is the cumulative normal distribution, 
 
 µ = {ln(adec) - β0)}/ β1,  (14) 
 
 σ = σ(ε)/ β1,  (15) 
 
and adec is the decision threshold. 
 
The program itself has a wide range of input conditions, which only requires the slope of the 
regression line to be positive.  The user is left to test for linearity, normality, and 
homoscedasticity of the residuals.  Berens has recently suggested [25] using the statistical tests 
for these properties that are provided by Minitab, Release 10.5 Xtra, at a 0.1 significance;13 
examples of applications of these tests are included in table 4. 
 

TABLE 4.  MINITAB RELEASE 10.5 Xtra TESTS APPLIED TO a  REGRESSION FOR 
TRANSDUCER NO. 2 

$

 
Property Test p 

Linearity of regression XLOF 0.000 
Anderson-Darling 0.101 
Ryan-Joiner (Shapiro-Wilk) > 0.1 

Normality of residuals 

Kolmogorov-Smirnov > 0.15 
Bartlett 0.000 Homoscedasticity of residuals 

(versus log(Area)) Levene 0.001 
 
Since the program does not apply a model for the response, the user is free to make arbitrary 
selections of parameters to be used for a and â.  As figure 29 demonstrates, for this set of data, 
plotting mV response versus either flaw diameter or flaw area produces a near-linear graph in the 
log-log coordinates that the program uses14. Area was chosen as the basis for the current 
analysis, since the near-linearity of the graph of mV versus area in linear-linear coordinates will 
be important to the subsequent Effective Reflectivity analysis (whereas the graph of mV versus 
diameter is distinctly nonlinear). 

                                                 
13 There is, as yet, no industrywide agreement on the appropriateness of these tests or the recommended 

significance. 
14 Dimensions used for diameter and area are mils (1 mil = 10-3 in.) and sq. mils. respectively (1 sq. mil = 10-6in2). 
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Figure 30 shows that the data are not quite linear.  However, the regression line provided by the 
program is, above, all the measured data for the no. 2 FBH.  The average observer would 
probably accept these data as quasi-linear, but the Minitab tests (suggested by Berens) 
resoundingly reject the hypothesis of normality and homoscedasticity but fails to reject the 
hypothesis of lognormality of the residuals.  Results are listed in table 4, and the residuals are 
plotted on a cumulative probability chart in figure 31.  It can be speculated that the rejection of 
normality is related to the fact none of the 16 no. 2 FBH points is above the regression line. 
 

 
FIGURE 29.  COMPARISON OF SCATTER-PLOTS OF SIGNAL RESPONSE FOR 
TRANSDUCER NO. 2 VERSUS FBH AREA OR FBH DIAMETER IN LINEAR OR 

LOGARITHMIC COORDINATES  (Note:  1000 mils = 1 inch) 

 
FIGURE 30.  COMPARISON OF TRANSDUCER NO. 2 DATA WITH a  REGRESSION LINE $
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FIGURE 31.  CUMULATIVE NORMAL PROBABILITY PLOT OF THE RESIDUALS FROM 
THE a  REGRESSION OF LOG (mV) ON LOG (AREA) FOR TRANSDUCER NO. 2 $

 
It is suggested in MIL-HDBK-1823  
 
a. that if deviations from the assumptions of linearity, normality, and homoscedasticity 

cannot be corrected it suffices to note them [26].  

b. that the range of flaw sizes considered may need to be restricted in order to ensure 
adequate conformance [27].  

c. that �as a minimum, these assumptions must be subjectively evaluated by visual 
examination of a plot of log â vs. log a� [28]. 

 
Consistent with the first of these suggestions, the non-conformances have been noted (estimates 
of POD obtained from the program should, therefore, be viewed as somewhat questionable 
validity).  Results from the analysis for data from transducer no. 2 are shown in figure 32 for the 
set of six thresholds used in the signal distribution analysis, forming part of the proposed ETC 
approach to POD (see figure 16) and for the lowest of the viable PF thresholds shown in figure 
28.  For the last of these thresholds, the program indicates slightly smaller values of flaw area 
than does the PF program (for example, 826 sq. mils versus 950 sq. mils at 0.9 POD or 631 
versus 783 at 0.1 POD).  To facilitate a comparison with the signal distribution (see figure 16) 
analysis, results from figure 32 have been replotted in figure 33, using FBH diameter in 64ths of 
an inch as the abscissa. 
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FIGURE 32.  USAF/UDRI a  ANALYSIS OF POD VS FLAW AREA FOR PLANAR VOIDS  $

 

 
 

FIGURE 33.  USAF/UDRI a  ANALYSIS OF POD VS FLAW DIAMETER FOR 
PLANAR VOIDS 

$
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Since using inspection thresholds below 380 mV requires extrapolation outside the range of 
experimental data, less emphasis should be placed on the POD curves for thresholds of 100 and 
200 mV than for the higher thresholds displayed in figures 32 and 33.  It should also be noted 
that, if extrapolated to even lower threshold values, the regression line of figure 30 implies a 
finite signal for a vanishingly small reflector.  Among the possible causes of this effect is the 
presence of noise. 
 
8.2.2  GEAE Effective Reflectivity Method. 

This method was developed specifically to deal with POD estimations for ultrasonic inspections 
which consist of small numbers of data points exhibiting considerable scatter�i.e., data for 
which use of a simple linear regression technique (one unguided by a physical model), such as 
used in the a  program�would be likely to result in arbitrary and unrealistic prediction of the 
dependence of response on flaw size.  A conceptual sketch of how a model can stabilize the 
regression is presented in figure 6. 

$

 
The method uses a simple mathematical flaw response model to provide a means to interpret the 
data from natural flaws in a physically plausible manner.  The commonly used linear area-
amplitude characteristic [9]15 of the FBH16 provides a reasonable first approximation to the 
response of defects in the transducer field.  Although this technique was not developed with 
regression in mind, it is equivalent to linear regression of the signal on the area (in linear-linear 
coordinates) with an intercept set at zero by the assumed model (again, see figure 6). 
 
8.2.2.1  Effective Reflectivity Analysis:  Initial Method. 
 
As originally conceived [8], this method involves: 
 
a. measuring the response from a set of FBHs at various depths using the same 

instrumentation and scanning parameters as intended for  actual product inspection. 

b. using the FBH data to calculate Equivalent FBH (EFBH)17 areas for indications found 
during  product inspection. 

c. performing a detailed metallographic examination of the regions from which selected 
indications originated with a goal of establishing the precise volumetric dimensions of 
each defect. 

d. calculating the ratio of the EFBH defect size predicted by the model to the measured size; 
this ratio is called the Effective Reflectivity, Re, and properties of the distribution of 
values of Re are used to calculate POD taking advantage of the lognormality that has 
usually been found. 

                                                 
15 Strictly applicable only well into the far field of a single-frequency unfocused transducer; see reference 9. 
16 Several alternatives for which mathematical models were readily available (such as cylinders and spheres � see 

reference 9) were evaluated, but the far-field approximation to the FBH was found to be most effective. 
17i.e., the area of a hypothetical FBH, normal to the sound beam, at the same depth as the indication that would give 

the detected indication amplitude. 
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e. identifying the smallest FBH that could be detected at the selected inspection threshold. 

f. dividing this FBH size by various percentiles of the Re distribution in order to obtain the 
estimates of the size of the real defects corresponding to various values of POD (for 
example, if the value corresponding to 0.1 cumulative probability is used, the resulting 
area is taken as a 50% confidence estimate of the size of defect that could be detected 
with 90% POD since 90% of the defects would have an Re at least this large). 

g. calculating lower one-sided 95% confidence estimates; this is conditional on that the Re 
values being distributed normally (or lognormally) [8]. 

 
The current set of data has no independent FBH calibration of the type previously described in 
step a.  Instead, Minitab has been used to fit a regression line with zero intercept, in mV versus 
area coordinates, consistent with the assumed linear area-amplitude model.  It may be seen from 
figure 34 that the regression for transducer no. 2 data obtained in this way is not a particularly 
good fit.  It is, therefore, not surprising that the Re distribution is irregular and, as shown in 
figure 35, is neither acceptably normal nor lognormal. 
 

 
FIGURE 34.  COMPARISON OF DATA WITH Re REGRESSION LINE 

(TRANSDUCER NO. 2) 
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FIGURE 35.  CUMULATIVE NORMAL PROBABILITY PLOTS FOR Re AND LOG (Re) 
(TRANSDUCER NO. 2) 

 
Although it is advantageous to use the properties of a standard distribution (where this is 
justified), the Effective Reflectivity method can be used empirically, and the POD, which is 
derived from probability values and Re, can be taken from figure 35.  Results from the transducer 
no. 2 data are shown in figure 36.  The EFBH corresponding to each of the threshold values is 
calculated from the regression relationship of figure 35.  The flaw sizes are then calculated by 
dividing these limiting FBH areas by the appropriate values of Effective Reflectivity, as 
described in step f.  Finally, these flaw areas were converted to planar disk diameters, expressed 
in 64ths of an inch, and were compared with other sets of POD data.  These results are generally 
compared to those from the A-hat analysis (cf. figure 33) although they show more irregular 
dependence of POD on flaw size. 
 
8.2.2.2  Effective Reflectivity Analysis:  Initial Method, Adjusted for Noise. 
 
Gilmore [29] has hypothesized that the area-amplitude linearity assumed by the FBH model were 
being concealed by the effects of the additive noise so that the observed signal amplitudes were 
actually signal plus noise.  Analyses of this data, using the assumptions of the linear area-
amplitude relationship with a constant noise added to each FBH signal, which is independent of 
the FBH diameter, results in the conclusion that the hypothesized noise is 173 mV18.  Figure 37 
shows that the fit of the regression line clearly improved by subtracting the assumed noise 
amplitude from each FBH response (although it is accepted as linear by the Minitab XLOF test 
at only 0.003 significance!).  Figure 38 shows that the residuals are still neither normal nor 
lognormal, but are distributed more symmetrically than the residuals shown in figure 35. 
 

                                                 
18 This process is equivalent to performing linear regression in linear-linear coordinates, on the original data, and 

allowing the regression analysis to select a nonzero intercept. 
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FIGURE 36.  GE EFFECTIVE REFLECTIVITY ANALYSIS POD FOR PLANAR VOIDS, 

LINEAR AREA-AMPLITUDE MODEL (TRANSDUCER NO. 2) 
 
It would be possible (and, perhaps, appropriate) to extract Re values from figure 37 in the same 
way that was done for figure 35.  To illustrate the type of POD curve given by the Effective 
Reflectivity approach in cases where a standard distribution is justifiable, the data in figure 37 
will be treated as normally distributed, with location (0.9958) and scale (0.0938) consistent with 
the straight line plotted in figure 38. 
 
POD values are generally similar to those in figures 33 and 36 and are shown in figure 39; 
although POD for the 200-mV threshold is predicted to be better, i.e., figure 39 shows that flaws 
of smaller size would be detected at this threshold that is the case for figures 33 and 36.  The 
100-mV threshold was not used in constructing figure 39, since it was below the hypothetical 
noise level of 173 mV noted two paragraphs above.  In the presence of such noise, a 100-mV 
threshold would lead to a rejection on each inspection opportunity since the noise would be 73% 
higher than this threshold.  The POD predicted in this case would be meaningless.  However, 
since this approach is nothing more than a hypothesis, there is no direct experimental support. 
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FIGURE 37.  COMPARISON OF NOISE-ADJUSTED DATA WITH Re REGRESSION 

LINE (TRANSDUCER NO. 2) 
 
 

 
FIGURE 38.  CUMULATIVE NORMAL PROBABILITY PLOTS FOR NOISE-ADJUSTED Re 

AND LOG (Re) (TRANSDUCER NO. 2) 
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FIGURE 39.  GE EFFECTIVE REFLECTIVITY ANALYSIS POD FOR PLANAR VOIDS, 

NOISE-ADJUSTED LINEAR AREA-AMPLITUDE MODEL (TRANSDUCER NO. 2) 
 
8.2.2.3  Effective Reflectivity Analysis:  Initial Method, Improved Model. 
 
Iowa State University developed more sophisticated methods for modeling the response of 
reflectors.  For example, FBHs that allow the replacement of the linear area-amplitude 
approximation by a model that accounts for much of the nonlinearity observed in figures 30 and 
34.  The results of fitting the output from one of these models [30] to the experimental FBH data 
is shown in figure 40 (see appendix A for more details).  The fit is clearly improved, although 
the model, which in contrast to the previous analysis (8.2.2.2), assumes there is no negligible or 
additive noise  and appears to under-represent the amplitudes of the larger FBHs.  Minitab does 
not provide a means for quantifying the improvement, since the new model is not available in 
closed form.  Figure 40 also shows three regression lines that were described in sections 8.2.1, 
8.2.2.1, and 8.2.2.2. 
 
The ISU model results, in values of Re shown in figure 41, are still not described well by the 
normal or lognormal distributions, despite the fact that the fit is better than the three linear 
regression lines (i.e., the hypothesis of normality is accepted at 0.02 significance by the 
Anderson-Darling test).  Therefore, there is little difference between the fit of the normal and 
lognormal distributions. 
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FIGURE 40.  COMPARISON OF ISU MODEL WITH a  AND R$ e REGRESSION LINES 

 

 
FIGURE 41.  CUMULATIVE NORMAL PROBABILITY PLOTS FOR THE ISU MODEL 

(TRANSDUCER NO. 2) 
 
Figure 42 shows the POD curves generated by applying Effective Reflectivity concepts to the 
ISU model (with location 1.0207 and scale 0.0611). 
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FIGURE 42.  GE EFFECTIVE REFLECTIVITY ANALYSIS POD FOR PLANAR VOIDS, 

ISU NONLINEAR AREA-AMPLITUDE MODEL (TRANSDUCER NO. 2) 
 
8.2.2.4  Effective Reflectivity Analysis:  Revised Method. 
 
The original Effective Reflectivity method was developed to be used with data from production 
inspections.  This ensures that realistic flaw properties were used to consider the dependence of 
the signal on flaw size.  Only flaws detected during real part inspections were used in the POD 
database.  The revised Effective Reflectivity method makes up for the potential bias in the 
database, which occurs as a result of possible under-representation of low-detectability flaws.  
The new method [31 and 32] hypothesizes that the signal amplitudes (and the related Re values) 
will fit the LEV distribution.  The probability was calculated for obtaining various values of 
location and scale.  These values were selected to maximize the overall probabilities for the 
entire dataset. 
 
Although there was an improved confidence in the results, it lead to an increased complexity of 
the analysis.  The iterative methods of solution necessary to identify the optimum values for the 
location and scale can be quite time consuming.  Furthermore, the properties of the LEV 
distribution are less widely documented than those of the normal or lognormal distributions. 
Therefore, the number of tests available, which conform to the model assumptions, is more 
limited. 
 
The results of analyzing the FBH data for transducer no. 2, using the revised Effective 
Reflectivity method and the ISU nonlinear area-amplitude model illustrated in figure 40, are 
shown in figure 43.  Despite the conservatism that was believed to be built into this revised 
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method, comparisons with earlier POD plots show that the data in figure 43 results in a 
surprisingly high POD.  This reflects one difficulty of incorporating nonlinear flaw model into 
the analysis.  Figure 43 is based on using the model response of a no. 1 FBH to represent the 
calibration described in step a of section 8.2.2.1.  As figure 40 suggests, different results are 
obtained when the calibration is based on the model for one of the larger FBHs (or on some other 
assumption). 

 
FIGURE 43.  REVISED GE EFFECTIVE REFLECTIVITY ANALYSIS POD FOR PLANAR 

VOIDS, ISU NONLINEAR AREA-AMPLITUDE MODEL (TRANSDUCER NO. 2) 
 
8.3  CONCLUSIONS. 

8.3.1  Comparison With New Methodology Results. 

Results from the new methodology can most easily be compared to those from the ASNT 
procedure by comparing the POD for a 400-mV threshold shown in figure 16 with the 50% 
confidence sizes listed in table 2.  Results from the PF procedure (see figure 28) are not directly 
comparable with those of the new methodology, due to the limited range of thresholds for which 
the PF analysis could be completed.  Comparing figures 33, 36, 39, 42, and 43 with figure 16 
shows the actual POD values obtained depend on the method selected.  For example, the POD 
for a no. 1 FBH, using a 400-mV threshold, varies from about 0.25 (Re, figure 36) to about 0.75 
(new methodology, figure 16).  Other POD values are: 
 
• 0.35 (A-hat, figure 33)  
• 0.50 (ISU model, modified Re, figure 43)  
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• 0.60 (ISU model, original Re, figure 42)   
• 0.70 (noise-adjusted Re, figure 39).   
 
Looking at the same data from another perspective, table 5 compares the hole sizes that exhibit a 
50% POD as a function of threshold.  The differences are most significant for small thresholds, 
corresponding to hole sizes out of the range in which data were available.  Since fundamentally 
different assumptions are made by the models in this region, these differences are not surprising.  
The new methodology results in plausible POD (a) curves, yet the observed differences warrant 
further study. 
 
TABLE 5.  HOLE SIZE EXHIBITING 50% POD FOR SEVERAL METHODOLOGIES AS A 

FUNCTION OF THRESHOLD 
 

 Threshold 
Methodology 200 mV 400 mV 800 mV 

New Methodology 0.32 0.88 1.55 
A-hat 0.67 1.02 1.55 
Original Re 0.85 1.18 1.68 
Original Re (noise adjusted) 0.35 0.98 1.63 
Original Re (ISU model) 0.75 1.00 1.63 
Revised Re (ISU model) 0.70 1.00 1.39 

 
8.3.2  Typical Sets of Ultrasonic Detectability Data. 

As noted at the beginning of section 8, the FBH data that are part of the current study are 
unusually well-behaved, in the sense that the scatter is not too large and, hence, they can be 
easily fit to a curve such as a regression line.  By comparison, data from the inspections of 
natural flaws are more widely scattered and fewer in number.  These differences make some of 
the methods considered above relatively inappropriate or difficult to use. 
 
9.  PHYSICS-BASED DESCRIPTIONS OF NOISE AND SIGNAL-PLUS-NOISE 
DISTRIBUTIONS:  THEORY, EXPERIMENTAL VERIFICATION, AND STRATEGIES FOR 
INCORPORATION IN THE NEW METHODOLOGY. 

9.1  MOTIVATION. 

The first implementation of the new methodology, described in section 5.2, is based on an 
empirical determination of (1) the noise distribution and (2) the microstructure-induced 
variations in the flaw response to the physics-based, microstructure-free theoretical expectations.  
In order to determine the latter, a sample needs to be prepared with the microstructure of interest, 
containing a significant number (8 and 16 were used in these studies) of nominally identical 
reflectors.  Experimentally comparing the responses of these reflectors determines the statistical 
model for the residuals, ε , describing the microstuctural contributions to the flaw response 
variability.  Additional sources of variability, such as the effects of scan plan and gate width, are 
also derived from the physics-based models, as were illustrated in section 7.2.  As seen in 

$
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sections 7 and 8, this approach has allowed the POD predictions of FBHs that are in reasonable 
agreement with those of existing methodologies and which appear to provide stable answers for 
a number of conditions in which the existing methodologies experience difficulties.  Moreover, 
for SHAs, predictions are made by the new methodology when none are delivered by existing 
methodologies.  Thus, the use of physics-based models for the microstructure-free flaw response, 
combined with empirical measurements of noise distributions and microstructure-induced flaw 
response variations, have provided a substantial step forward in the author�s ability to determine 
POD for the ultrasonic detection of interior flaws. 
 
In the course of these investigations, it became clear that further improvements could be made by 
incorporating information from physics-based models about the form of the noise distribution 
and the microstructure contributions to the flaw response distribution.  This section summarizes 
the information that was gained about the form of these distributions based on cooperative 
efforts of the POD and Fundamental Studies Tasks of the ETC.  The section concludes with a 
discussion of how this information might be implemented in a second generation methodology, 
which will be developed in the future.  
 
It should be noted that the studies reported in sections 9.2 and 9.3 were completed after the 
initial formulation of the methodology, which included the assumption that the noise followed a 
lognormal distribution.  This work can thus be considered as a basis for refining that assumption 
in future work. 
 
9.2  EMPIRICAL STUDIES OF NOISE DISTRIBUTIONS. 

As the preceding discussion demonstrated, the estimation of underlying noise distributions is 
important for the estimation of PFA.  Knowledge of this distribution is also important for the 
utilization of digital data, including such potential techniques as dynamic thresholding [33] and 
signal-to-noise, ratio-based material acceptance criteria [34].  This section covers an empirical 
analysis of ultrasonic data that was done to estimate the appropriateness and parameters of 
several closed-form statistical distributions.  It will be followed (section 9.3) by a further 
discussion of noise distributions based on physics-based modeling results. 
 
9.2.1  Mathematical Techniques. 

Several statistical distributions were considered as possible candidates for describing the noise 
distribution.  First, because of its simplicity, is the normal distribution with probability density 
function (PDF) given by 
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where µn and σn are the parameters to be determined.  Second, natural extension of  equation 
16 is the lognormal distribution.  Here, the PDF is  
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with µ ln  and σ  defining the distribution.  The third distribution is the LEV distribution.  This 
distribution was selected due to its relation to the C-scan image formation process [35].  The 
LEV PDF is given by 
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where µlev and σlev once again are the parameters to estimate.  For completeness, another non-
symmetric distribution was selected.  This is the two-parameter Weibull distribution.  Its PDF 
is  
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with α and β being the unknown parameters.  
 
In all cases, the parameters were estimated using the maximum likelihood method, described as 
follows [36]:   
 
Suppose a set of random variables, X1, X2, �, Xn, was described by the probability distribution 
function p(x; Θ1, �, Θm) where the parameters Θ1, �, Θm have unknown values, take on the 
observed values x1, x2, � ,xn.  Then the probability that n samples from the distribution take on 
these values is given by L(x1, x2, � ,xn; Θ1, �, Θm).  This is called the likelihood function and, 
because each sample taken is independent, this likelihood can be expressed by 
 
  (20) ),...,;(...),...,;(),...,;(),...,;,...,,( 11211121 mnmmmn xpxpxpxxxL ΘΘ××ΘΘ×ΘΘ=ΘΘ
 
If the authors take the likelihood to be a function of the parameters Θ1, �, Θm, then 
maximizing the likelihood gives the parameter values for which the observed sample is most 
likely to have been generated.  This set of parameters is called the maximum likelihood 
estimators.  This operation can be done most easily by taking the natural logarithm of the 
likelihood  
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and solving the set of equations, j=1,2,�,m 
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for the values of the parameters will yield the maximum likelihood estimators.  In practice, this 
was performed using MathCAD Plus Version 5.0 on a personal computer. 
 
Once the maximum likelihood estimators are determined, the estimated PDF can be plotted on 
the same scale with the experimental PDF.  This is done by plotting a histogram of the data set 
and then scaling it by the total number of points in the data set.  The goodness of fit of the 
estimated PDF can then be determined by visual inspection of these plots.  This is a very 
subjective method; however, several quantitative comparison techniques were also identified.  
The first was the root mean squared (rms) error between the experimental and estimated PDF.  
Both weighted and unweighted rms errors were used.  The Wirsching-Carlson W and S 
statistics  
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are other quantitative or objective evaluation methods which were used [37].  For the data sets 
considered for this work, the fits were sufficiently good that the probability plots did not 
differentiate the techniques and, in addition, the results from all the quantitative comparisons 
were consistent, so in the interest of simplicity, only the rms error values were used.  The 
probability plots did, however, present useful insight into the areas where the quality of the fit 
was not as good.  As in most situations, this proved to be in the low probability or tail area of 
the distribution. 
 
9.2.2  Experimental Techniques. 

An important part of doing this analysis is choosing a data acquisition method which 
guarantees consistent and statistically meaningful results.  The main parameters identified 
which could affect the statistical quality of the fit were the number of data points used to form 
the estimate as well as the spacing of the pixels relative to the beam diameter of the transducer.  
As the paper that resulted from this work [38] discusses in more detail, the experimental and 
estimated PDF were calculated for the different data sets and the resulting rms errors plotted.  
The rms errors showed little change in the range from 0.008″ to 0.064″ pixels and then vary 
wildly for the 0.128″ pixels.  The rms error also increases as the amount of material sampled is 
reduced, until it reaches a point where it behaves inconsistently.  Based on these results and to 
produce a consistent analysis, it was decided that all data would be acquired over as large an 
area of the sample block as possible and must contain a minimum of 5,000 pixels regardless of 
the transducer beam diameter. 
 
Ultrasonic test data were taken with many combinations of data acquisition parameters.  The 
parameters consisted of a C-scan gate duration, transducer frequency, transducer beam 
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diameter, and the material microstructures.  To be an effective method of characterizing grain 
noise, the estimation technique should be robust under a variety of data acquisition conditions.  
The effect of each of the first three conditions on the estimation results was individually 
addressed by taking data from three identically designed sample blocks cut from three different 
Ti forgings.  The fourth condition was addressed implicitly by taking the data from the three 
different sample blocks. 
 
To test the effect of each of these conditions, the following was done: 
 
• C-scan gate duration�Data were taken from a 5-MHz transducer with a 0.100″ focal 

plane beam diameter from the sample blocks with 1-, 2-, 4-, and 8-µs gate widths, all 
centered around the focal plane of the transducer, which was placed at 1″ metal travel, 
i.e., 1″ below the metal surface.  The estimates and associated rms errors were 
calculated and the results plotted. 

 
• Frequency�Data were taken with 5-, 7.5-, and 10-MHz transducers, all with a nominal 

0.100″ beam diameter, on the sample blocks using an 8-µs gate width centered around 
the focal plane of the transducer, which was placed at 1″ metal travel.  The estimates 
and associated rms errors were calculated and the results plotted. 

 
• Beam diameter�Data were taken with 0.069″, 0.100″, and 0.116″ focal plane beam 

diameter transducers, all with a 5-MHz nominal center frequency, on the sample blocks 
using an 8-µs gate width centered at the depth of focus of the transducer, which was 
placed at 1″ below the entry surface.  The estimates and associated rms errors were 
calculated and the results plotted. 

 
9.2.3  Results. 

Plotting the results of these experiments demonstrated the skewed nature of C-scan noise 
distributions, as shown in figure 44.  As a result, the lognormal and LEV estimates give much 
better fits than those produced by the normal and Weibull distributions.  They also show that 
both the lognormal and the LEV estimates are robust with respect to changes in data 
acquisition parameters.  No clear trends could be found in the data with respect to any of the 
four above defined conditions.  Upon looking at the data, there were no clear distinctions in 
performance between the lognormal and LEV estimates.  This would lead to the conclusion that 
either statistical distribution would suffice, and the selection should be controlled by other 
factors such as computational intensity.   
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FIGURE 44.  PLOTS OF ESTIMATED AND EXPERIMENTAL DISTRIBUTIONS FOR A 

5-MHz, 0.100″ DIAMETER TRANSDUCER ON A Ti-17 TEST BLOCK (a) LEV FIT WITH 
µ = 33.405, σ = 4.221, rms = 0.003, (b) LOG NORM FIT WITH µ = 3.567, σ = 0.135, 

rms = 0.002, and (c) WEIBULL FIT WITH µ = 35.728, σ = 4.931, rms = 0.009 
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Two potential applications of these distributions, the determination of a SNR (signal-to-noise 
ratio)-based reject criterion and the calculation of the probability of false alarm, are highly 
dependent on the low probability or tail area of the distribution.  Looking at the tail area of the 
distributions considered here (see figure 45) reveals that the estimate from the LEV distribution 
lies above the experimental distribution and the estimate from the lognormal below.  These 
results were typical for the data considered here.  Based on this trend, one of the estimated 
distributions may be better suited for a particular application than the other.   
 

  

Pr
ob

ab
ili

ty
 

 
FIGURE 45.  THE LOW PROBABILITY OR TAIL AREA OF THE EXPERIMENTAL AND 

ESTIMATED PDFs DERIVED FROM GRAIN NOISE DATA COLLECTED WITH A 
5-MHz, 0.100″ BEAM DIAMETER TRANSDUCER ON A Ti-17 SAMPLE BLOCK 

 
For example, when the estimated distributions are used to calculate the noise term in a SNR 
calculation, the noise term derived using the lognormal curve would necessarily be lower than 
that derived using the LEV estimate.  With all other terms in the SNR calculation being equal, 
this would result in the SNR calculated from the lognormal distribution being higher than that 
from the LEV.  Using a material acceptance criterion based on a constant SNR threshold, the 
estimate derived using the lognormal distribution would necessarily reject flaws with lower 
amplitude signals.   
 
Next, consider using the estimate to calculate PFA.  The PFA is defined as the amount of area 
under the PDF of the noise, which lies above the detection threshold value.  Therefore, a PFA 
calculated using the LEV estimate would be larger than that calculated using the lognormal 
estimate.  When trying to evaluate the practicality of an inspection technique, it is generally 
better to overestimate the PFA.  Thus, when using this technique in practice, it is important to 
consider the application as well as the magnitude of quantitative fit measurements. 
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9.2.4  Conclusions. 

This work discusses an experimental method of estimating the parameters of a closed-form 
statistical distribution from ultrasonic C-scan data.  Using this method, it was shown that 
reasonable estimates of the Ti grain noise statistical distribution can be obtained using either 
the lognormal or largest extreme value (LEV) distribution.  Both of these distributions provided 
estimates that had low rms errors with respect to the experimentally determined distributions 
under a wide variety of ultrasonic scan conditions.  Although generally acceptable, these 
estimates exhibit deficiencies in the tail of the distribution that could cause concern in certain 
applications.  This provides a motivation for the further studies reported in section 9.3.   
 
The results discussed here were only for forged Ti microstructures.  Preliminary results indicate 
that this method works equally well on data from billet microstructures. However, this needs to 
be more closely investigated in the future. 
 
9.3  MODEL-BASED STUDIES OF NOISE DISTRIBUTIONS. 

The noise deficiencies of the lognormal or LEV distributions in fitting the tail of the gated peak-
to-peak noise distribution motivated further studies as to the proper functional form of the gated 
peak-to-peak noise distribution.  The lognormal distribution was used in the initial 
implementation of the methodology as discussed in section 5.2.  However, neither the lognormal 
nor LEV distributions were able to satisfactory describe the behavior of the high-amplitude tail 
of the distribution.  This lack of goodness of fit is a concern in the estimation of PFA for two 
reasons: (1) it is a matter of some economic concern to the original equipment manufacturers 
(OEMs) and (2) in the implementation of improved detection techniques, such as noise-based 
thresholding and signal-to-noise ratio-based rejection criteria.  Thus, further examination of the 
problem was conducted, leading to improved fits, as described in this section.  The essential idea 
of these developments is that the noise within a gate is sampled independently in different time 
subintervals within that gate.  Hence, the gated peak-to-peak noise distribution is better 
described as the maximum of multiple random variables (RVs) rather than a single RV.  
Although resulting descriptions of the noise distribution have not been implemented in the 
current methodologies, they are available for the next generation.  
 
9.3.1  Theoretical Models for Gated Peak-to-Peak Noise. 

As indicated in section 5.1, estimating the underlying noise distributions is very important in a 
signal-to-noise ratio-based approach, estimating the POD, PFA, and the risk determination via 
the ROC method.  This subsection covers a theoretical development of the modeling and 
estimation of ultrasonic grain noise in large-grained alloys.  Analysis based on these 
developments is reported in section 9.3.2, where data from forged and billet microstructures of 
titanium alloys are used to verify the model.   
 
Possibly the most straightforward approach to modeling the noise distribution of gated peak-to-
peak signals is the extreme value theory [39 and 40].  This is an asymptotic approach that 
produces three possible distributions for the maximum signal occurring in the gate.  The LEV 
distribution occurs when certain conditions are held.  The continuous signal in the gate (A-scan, 
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rectified A-scan, etc.) is comprised of a number of discrete instantaneous signals.  It is assumed 
that each discrete value in the gate is the result of observing a random variable, which are all 
independent and identically distributed (IID).  (The term �copies� will be used in the remainder 
of this section to describe this situation.)  One thinks of the total gate as being divided into a 
number (N) of subregions, in which the same distribution function is copied.  When the RVs are 
IID, the maximum signal in the gate is determined by taking the maximum value of N samples 
taken from this copied distribution.  Allowing the number of possible discrete, instantaneous 
observations N to approach infinity, leads to the N LEV distribution, i.e., when the discrete RV 
has a Rayleigh distribution.  Thus, if each discrete signal is an envelope amplitude from a 
complex normal process, then the limiting or asymptotic noise distribution is the LEV.  This 
modeling approach was first applied to make enhancements to the effective reflective method 
[31, 35, and 41], as discussed in section 9.2.   
 
Another approach [42] has also been developed, based on discrete gate RVs, that is less 
restrictive in its mathematical assumptions.  In this setup, the individual RVs do not necessarily 
have all the same distribution, and/or only a finite number of discrete instantaneous signals are 
employed in modeling the noise distribution of the gated peak-to-peak signal.  Due to the nature 
of this development, it is possible to relate the number of individual RVs in the gate to 
parameters in the inspection process.  In the context of ultrasonic inspection, the envelope 
amplitude may be thought of as a continuous function that connects the peaks of the individual 
cycles of the RV waveform. The waveform quantity is sometimes represented by the magnitude 
of the analytic signal [43] and is closely related to the rectified output of typical ultrasonic 
instruments.   
 
The discrete instantaneous RVs are considered to be envelope amplitudes because the output of 
the gate is the maximum peak-to-peak response.  Various arguments indicate that this maximum 
peak-to-peak response can be approximated by twice the maximum of the independently 
sampled envelope amplitudes.  The development of the Rayleigh distribution as the distribution 
of discrete RVs is analogous to developments of the signal amplitude distribution in signal 
detection theory [43].  When a sample of material is inspected with an interrogating beam, some 
of the energy is absorbed and some is reflected.  The reflected, or backscattered, signal that is 
observed at any instant (depth) is a function of the resultant of individual energy contributions 
from each of many reflectors (grains, microstructure anomalies, etc.) in the ensonified material.  
This can be described by a random walk in the complex plane or the random flights model [44-
48] (cf. figure 46).  If the real and imaginary parts of the reflector signals of the random walk are 
IID with independent normal distributions, then the resultant envelope amplitude follows a 
Rayleigh distribution.  The same conclusion holds (under the IID assumption) by virtue of the 
Central Limit Theorem if the number of reflectors is large, and this is the argument generally 
used to develop the distribution of an individual RV in the gate. 
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FIGURE 46.  RANDOM FLIGHTS MODEL 
 
If the grains that produce an instantaneous gate signal are not homogenous in reflecting 
properties and/or only a small number of scatterers are ensonified, the limiting Rayleigh 
distribution may not hold.  Therefore, the Rayleigh distribution may not be applicable to the 
discrete RVs of the gate signal.  Thus, it would be of interest to have other candidate 
distributions for study.  Three other distributions that might be used are now considered.   
 
• The K distribution [49 and 50] is a solution to the two-dimensional random walk problem 

in the complex plane.  It generalizes the standard normal assumptions in that, when the 
amplitude of each reflector has a K distribution, the resultant amplitude also has a K 
distribution, i.e., the K distribution is reproductive.  The use of the K distribution as a 
generalization of the Rayleigh distribution has been previously considered [51] due to its 
ability to represent both the normal distribution situations and the non-normal 
distribution situations.   

 
• The original development of the effective reflectivity method [8] empirical studies led to 

the lognormal distribution, so this distribution could describe the gated-peak-to-peak 
noise distribution.  However, it is interesting to note that the original application of the 
effective reflectivity method was for small-grained, powder alloys and the distribution 
was for the gated-peak-to-peak normalized flaw response (i.e., Re) (and not an individual 
RV).   

 
• The Weibull distribution is one of the smallest extreme value distributions and, thus, 

might not be warranted as a candidate.  However, when the shape parameter of the 
Weibull distribution has the value 2, the Weibull distribution reduces to the Rayleigh 
distribution, so that the Weibull could also be studied. 

 
To summarize, there are five natural candidate distributions for use in the study of the gated 
peak-to-peak noise: LEV, Rayleigh, K, lognormal, and Weibull.  However, the LEV and 
lognormal might only represent the gated peak-to-peak noise and not an individual RVs 
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producing the gated output noise.  It will be asserted in section 9.3.2.3 that the asymptotic 
distribution of the maximum of each of these five distributions is the LEV.  Thus, if the number 
N of independent copies in the gate is large, the use of the LEV distribution can be based on a 
number of underlying distributions that have merit.  Moreover, earlier studies [38] of ultrasonic 
grain noise have shown that LEV overestimates the right tail of observed noise distributions in 
certain cases, while lognormal underestimates the right tail (cf. figure 45).  Considering these 
two distributions, as associated with a finite number of individual RVs in the gate like the 
Rayleigh, K, and Weibull might improve upon these observed results, consistent with the 
physics-based model presented in reference 42.   
 
Each of the five distributions will be used as the distribution of a discrete RV gate in an 
estimation scheme where the number of discrete instantaneous signals is finite and unknown, i.e., 
must be estimated.  Since all distributions are known in form, the method of maximum 
likelihood estimation (MLE) will be employed.  Use of MLE is well established.  However, in 
the present situation, using MLE led to some interesting challenges which are discussed.  It 
should be noted that the study only focused on complete distributions.  However, the major 
interest is in the right tail of the noise distribution.  Future efforts will consider various means of 
weighting the observations so more emphasis is placed on accurately estimating the right tail of 
the noise distribution.  This could also improve the use of the LEV and/or lognormal 
distributions as gated peak-to-peak noise distributions [52]. 
 
9.3.2  Empirical Investigation of Gated Peak-to-Peak Noise. 

In this section, the analysis procedure is outlined and the investigation results are presented for 
each of the five candidate distributions discussed in section 9.3.1 (LEV, Rayleigh, K, lognormal, 
and Weibull) for the distribution of a discrete gate RV.  An MLE procedure was used to obtain 
parameter estimates for the distribution of the maximum unknown number of IID copies in each 
candidate distribution.  The fitted distributions for envelope amplitude were derived by 
substituting parameter estimates, including an estimated number of independent copies, into the 
form of the distribution of the maximum in each case.  Both graphical and statistical goodness-
of-fit (GOF) assessments were made from the resulting distributions. 
 
9.3.2.1  Maximum Likelihood Procedure (Preliminary). 
 
The five natural candidate probability density functions (PRFPDF�s) for discrete gate 
observations were: 
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The literature contained discrepancies concerning the form of the K distribution [53], which the 
authors have attempted to resolve [50].  However, this distribution is quite flexible or may be 
generalized [54], to yield all candidate distributions under consideration for particular parameter 
value settings. 
 
For an unknown number (N) of IID copies of any candidate distribution and n sample points ( ) 
used in the procedure, the likelihood for the maximum peak-to-peak noise in the gate was taken 
to be [42]: 

yi
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where θ generically represents each candidate distribution�s parameter vector, and F  is the 
cumulative distribution function (CDF).  The actual MLE procedure used was a two-stage 
estimation scheme where the unknown number of copies in the gate from each candidate 
distribution, N, was estimated in stage one, then fixed, and the remaining parameters re-
estimated in stage two, given the fixed value for N from stage one.  No appreciable differences in 
parameter estimates resulted from stage one (free optimization) to stage two (conditional 
optimization). 
 
As the time required to compute MLEs was approximately 5 hours for all five candidates (for 

 on a Sun SPARCstation 10, using Splus software from MathSoft, Inc.), a 
modification to the procedure was made for two reasons: (1) expediency and (2) validity.  A 
routine was built which subdivided the range of observations into bins, accumulating 
observations in bins with a minimum count of ten observations per bin.  One pass was made 
from the left tail of the empirical distribution to the mode and another from the right tail to the 
mode.  As this heuristic approach will typically leave holes in the range of coverage of the 
resulting subintervals, an aggregation of bins was made which left no coverage holes.  The 
minimum number of observations per bin after aggregation was first taken to be 5 and then 2 
with no appreciable differences in parameter estimation.  The data, after binning, were 
summarized by the bin endpoints and the counts of observations per bin. 

n ≅ 15000
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The likelihood associated with this binning procedure was derived from the multinomial 
distribution, with probabilities provided by the candidate distribution CDFs: 
 

   (31) [L N c l r i k F r F li i i i
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where are the count, left-hand endpoint, and right-hand endpoint for the i-th of the k 
bins.  Binning reduced the computation time by an order of magnitude (5 minutes for the cycle 
of five candidate distributions for ). 

( , , )c l ri i i

n k≅ ≅15000 50,  
 
9.3.2.2  Maximum Likelihood Procedure (Final). 
 
It became evident after the first few attempts at fitting equation 31 to the data that some form of 
interval censoring had taken place in the recording of the envelope amplitude data.  All 
observations in a C-scan dataset were either integer or even.  This rendered equation 31 
inappropriate when applied to continuous data.  Moreover, the exact type of censoring, 
truncation (chopping), or rounding was not known, and thus a modification to equation 31, 
which allowed for either, was introduced: 
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where table 6 provides values of δ 1  andδ 2 : 
 

TABLE 6.  LIKELIHOOD MODIFICATIONS FOR CENSORING 
 

 Integer Observations Even Observations 
Rounding δ 1 0 49999999= .  δ 1 0 49999999= .  
 δ 2 100000001= .  δ 2 2 00000001= .  
Truncation δ 1 0 99999999= .  δ 1 0 99999999= .  
 δ 2 100000001= .  δ 2 2 00000001= .  

 
Equation 31 is the likelihood upon which all conclusions are based. 
 
9.3.2.3  Analytical Asymptotic Results. 
 
Each of the candidate distributions exhibits the LEV as the distribution of the maximum in the 
gate when the number of IID copies, N, approaches infinity.  This result is well known for the 
lognormal and the normal distribution but is new for the Rayleigh, Weibull, and K distributions.  
Hence, the LEV distribution should produce an estimate of N near 1 and perform well in a GOF 
assessment if estimates of N are large for the other candidate distributions. 
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9.3.2.4  Goodness of Fit Assessments. 

Seven billet data sets and twenty-four forging data sets were analyzed.  They differed in overall 
noise level but did not differ significantly regarding the results they produced by type of 
specimen (see section 9.3.2.6).  Both graphical and statistical procedures were used to assess the 
GOF for each of the fitted candidate distributions.  Initially, B-splines were used to fit the 
empirical CDF, with midpoints of the data grid used as knots for the splines.  An empirical PDF 
was defined as a derivative of the B-spline, which was fitted to the empirical CDF [55].  The 
Splus version of the spline derivative did not allow constrain for non-negativity in the empirical 
PDF.  In other words, when the B-spline fit to the empirical CDF is made and differentiated to 
obtain the PDF, there is no assurance in the fitting procedure that the PDF will always be 
positive, as must be the case for any proper probability distribution function.  Therefore, the 
assessment was discontinued, and a comparison was done between the empirical histogram with 
the fitted PDFs and Q-Q plots.  Accompanying plots provide more detail.  Figure 47 CB_1.2.dat 
provides results for one billet run made on the high-noise region of the contaminated billet (see 
section 10.2).  Figure 48 S94D_4X.dat provides results for one forging run.  The results 
presented in figures 47 and 48 show the assumptions of both data rounding (parts a and b) and 
data truncation (parts c and d).  The �whiskers� in the Q-Q plots signify flat portions of the 
empirical CDF. 
 
Three statistical measures were applied to the fitted (continuous) distributions in the first round 
of analyses:  Kullback-Leibler divergence, Hellinger distance, and the Kolmogorov-Smirnov 
(K-S) test statistic.  Upon realizing that the data were interval-censored, the K-S statistic was 
modified accordingly (dropped the Kullback-Leibler divergence and Hellinger distance, as these 
are continuous measures) and incorporated the  test statistic based on the bins into which the 
data were gathered.  Tables 7 and 8 provide examples of the results for the billet data set and the 
forging data set (whose results are shown graphically in figures 47 and 48).   

χ 2

 
The values of the Chi-square and K-S statistics in tables 7 and 8 should be interpreted in the 
usual manner (large values indicate lack of statistical fit).  The p-values are associated with the 
Chi-square statistic and should be used as a figure of merit only.  A small p-value indicates 
significance and have corresponding large values of the Chi-square statistic.  The data were 
binned for analysis purposes to just eliminate gaps in the tails.  Thus, the number of bins can 
experience large changes from situation to situation, and there are cases in which the expected 
number of observations per cell is not at least 5.  Also, the number of bins is large, tending to 
produce unwanted statistical significance.  Given the nature of the Chi-square statistic as applied 
in tables 7 and 8, one would not use the ordinary guidelines in declaring statistical significance.  
Therefore, the Chi-square p-values should be used with caution.  The K-S statistic is corrected 
for binning and does not suffer the problems that the Chi-square does.  It is the more reliable of 
the two statistics.  Unfortunately, simulation is required to obtain the p-values for the K-S 
statistic.  This was not done in the Phase I effort.  With these caveats, possibly the only safe 
conclusion is that the LEV does not fit the billet data.  In this vein, note that, except for the LEV 
distribution, the situation is mixed between the two tables for the values of the K-S statistic. 
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(a)  Q-Q Plot Assuming Rounding in the Data 

 

 
(b)  Comparison of Several Distributions to the Noise Histogram, Assuming Rounding 

 
FIGURE 47.  FITTING VARIOUS DISTRIBUTIONS TO NOISE DATA FROM THE HIGH 

NOISE REGION OF THE CONTAMINATED BILLET 
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(c)  Q-Q Plot Assuming Truncation in the Data 

 
(d)  Comparison of Several Distributions to the Noise Histogram, Assuming Truncation 

 
FIGURE 47.  FITTING VARIOUS DISTRIBUTIONS TO NOISE DATA FROM THE HIGH 

NOISE REGION OF THE CONTAMINATED BILLET (Continued) 
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(a)  Q-Q Plot Assuming Rounding in the Data 

 
(b)  Comparison of Several Distribution to the Noise Histogram, Assuming Rounding 

 
FIGURE 48.  FITTING VARIOUS DISTRIBUTIONS TO NOISE DATA FROM A FORGING 

 77 



 
(c)  Q-Q Plot Assuming Truncation in the Data 

 
  (d)  Comparison of Several Distributions to the Noise Histogram, Assuming Truncation 

 
FIGURE 48.  FITTING VARIOUS DISTRIBUTIONS TO NOISE DATA FROM A FORGING 

(Continued) 
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TABLE 7.  STATISTICAL MEASURES FOR BILLET NOISE DATA 
 

                  Hi-Noise CB_1.2.dat Rounded 
        
 param 1 param 2 N Chi-sq P-value K-S 
Lognormal 3.899 0.263 2.454 69.498 0.001 110.535 
LEV 60.286 10.680 0.599 138.629 0.000 153.849 
Rayleigh 25.474   10.367 159.524 0.000 77.082 
Weibull 1.435 23.056 32.609 71.897 0.000 113.008 
K 0.161 5.697 22.157 55.553 0.020 46.686 
       
                  Hi-Noise CB_1.2.dat Truncated 
        
 param 1 param 2 N Chi-sq P-value K-S 
Lognormal 3.903 0.263 2.523 69.280 0.001 110.584 
LEV 58.776 10.680 0.723 138.628 0.000 153.849 
Rayleigh 25.566   10.648 157.596 0.000 76.919 
Weibull 1.437 23.152 33.602 71.814 0.000 113.040 
K 0.161 5.755 22.840 55.472 0.020 46.700 

 
TABLE 8.  STATISTICAL MEASURES FOR FORGING NOISE DATA OBTAINED WITH A 

TRANSDUCER HAVE A NOMINAL CENTER FREQUENCY OF 5 MHz AND 
USING A 4-µsec TIME GATE 

 
 S94D_4x.dat Rounded    
        
 param 1 param 2 N Chi-sq P-value K-S 
Lognormal 3.911 0.176 1.332 56.724 0.698 65.404 
LEV 52.316 7.576 0.624 1597.767 0.000 495.579 
Rayleigh 19.625   22.840 63.488 0.495 115.235 
Weibull 2.143 29.934 17.974 59.087 0.617 69.570 
K 0.951 171.624 23.662 33.532 0.999 143.172 
       
 S94D_4x.dat Truncated    
        
 param 1 param 2 N Chi-sq P-value K-S 
Lognormal 3.918 0.175 1.363 56.684 0.699 65.648 
LEV 52.431 7.576 0.657 1597.788 0.000 495.578 
Rayleigh 19.714   23.669 64.041 0.475 117.357 
Weibull 2.151 30.188 18.369 59.095 0.616 69.527 
K 0.947 171.624 24.535 34.284 0.999 145.742 

 
Note that, in agreement with the discussion in section 9.3.2.3, the value of N is large for the 
Rayleigh, Weibull, and K distributions and near 1 for the LEV distribution.  Note also, by 
comparison to figure 44, that the multiple IID copies of lognormal, Rayleigh, K, and Weibull 
distributions all produce significantly better fits to the upper tail than do the single lognormal or 
LEV distributions.  Hence, the objective for this study was realized. 
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9.3.2.5  Comparison to Predictions of Physical Model. 
 
Equation 30 represents a distribution of the gated peak-to-peak noise as the maximum of some 
RVs.  In its derivation, Margetan, et al. [42] suggested that the number of discrete RVs should be 
related to the length of the gate and the duration of the sonic pulse.  In particular, if T is the 
length of the gate and ∆τ is a parameter known as the equivalent square wave duration (ESWD), 
then one expects 
 
 N = cT/∆τ  (33) 
 
where c is a numerical proportionality constant and ∆τ is defined in the following way.  Suppose 
the pulse has an envelope in the form A(t), which has a peak value Ao.  Then  
 
 ∫=∆ 22 /])([ oAdttAτ  (34) 

 
For the limited number of cases studied in reference 42, it was found that c≈ 1 when one took 
into account the physically expected variation of RV properties within the time gate. 
 
As a first approximation, consider a Gaussian-shaped pulse, for which it can be shown that 
 
 Bf6/663.0 ∆=∆τ   (35) 
 
where ∆f6B  is the 6-dB bandwidth.  Combining equations 33 and 35 leads to the result 
 
   (36) TfcN B65.1 ∆=
 
Table 9 tests this model by comparing the values of N for the Rayleigh (NR), Weibull (NW), and 
K (NK) distributions determined for a set of forging data set (which were shown in table 8), to 
the predictions of equations 35 and 36, based on the nominal values for the probes used, as 
provided by Howard [56].  One sees that there is reasonable agreement if we take c to have a 
value on the order of 2.  The fact that values of N, which are derived by the maximum likelihood 
analysis of the noise distribution, correlates well with the values derived from the physical 
models, provides significant support for the latter.  However, further work is required to identify 
the source of the factor of 2 discrepancy in the value of c observed by Margetan, et al. [42] and 
in this work. 
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TABLE 9.  COMPARISON OF VALUES OF N COMPUTED FROM NOMINAL PROBE 
PARAMETERS TO THOSE DETERMINED BY MAXIMUM LIKELIHOOD 

ANALYSIS OF FORGING NOISE DATA 
 

 
File 

 
T (µsec) fc (MHz) 

∆f6dB 
(MHz) ∆τ (µsec) 

 
T/∆τ 

 
NR 

 
NW 

 
NK 

C 8 4.5 2.0 0.33 24 44 35 48 
D 4 4.5 2.0 0.33 12 23 18 24 
E 2 4.5 2.0 0.33 6 10.8 8.7 11.1 
F 1 4.5 2.0 0.33 3 5.4 8.5 6.4 
K 8 4.9 2.2 0.30 27 51.6 69 100 
L 8 6.6 3.0 0.22 36 63.0 58.9 68.4 
M 8 9.2 4.1 0.16 50 - - - 
N 8 4.5 2.0 0.33 24 33.8 28.3 36.0 

 
9.3.2.6  Conclusions. 
 
The plots and tables presented above are representative exhibits of the analysis results for a billet 
data set and for a forging data set.  The major conclusions based on all data analyzed are: 
 
• Rounding appeared to be the type of interval censoring that had taken place.  In any 

event, the conclusions which follow are reasonably invariant to the actual type of 
censoring. 

 
• The LEV distribution is not a viable candidate for the envelope amplitude distribution.  

However, it is interesting to note that the estimate of N was near 1 for LEV for all data 
sets, meaning that the estimate of N for other distributions should be large but not 
practically infinite.  The LEV distribution tends to overestimate the area in the right tail, 
an observation which has been made before [38]. 

 
• The K distribution performed quite well in comparison with the lognormal, Rayleigh, and 

Weibull; each of which exhibited good performance (results are mixed for billet data with 
respect to the K, Rayleigh, and Weibull distribution). 

 
• The lognormal distribution produced estimated values of N an order of magnitude 

smaller than those produced by the Rayleigh, Weibull, and K distributions.  The 
theoretical meaning of this result remains to be discovered. 

 
• The lognormal distribution tends to produce superior results for forging data sets. 
 
• The K distribution does well for billet data sets. 
 
• Data sets that contained only even observations were considered to be invalid and were 

not used in subsequent analyses. 
 
• GOF (Goodness of Fit) was poor for all distributions when recordings represented 

mixtures of high- and low-noise regions.  In other words, the results of the current 
analysis should only be applied to noise data taken from a homogeneous region. 
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9.4  MODELING SIGNAL-PLUS-NOISE DISTRIBUTIONS. 

The work done on the implementation in the first generation methodology signal distribution has 
been enhanced, and this section summarizes the current understanding.  At the heart of the POD 
methodology is the use of physical models to describe the flaw response that would be expected 
in the absence of noise.  The first generation implementation of the methodology (sections 5 
through 7) describes the responses from sets of nominally identical FBHs or SHA inclusions.  
These are used to empirically define the distributions of the model-predicted response, with the 
emphasis placed on the microstructural contributions to the variability.  However, using models 
to describe the form of this distribution would reduce the need to rely on empirically determined 
FBH responses.  
 
In section 9.3, the models for distributions of noise were discussed and in section 6, deterministic 
models for signals in the absence of noise were presented.  In this subsection, preliminary results 
show how these might be combined to predict the microstructural contributions to the signal 
distribution.  These concepts are strongly motivated by approaches used previously in the radar 
and signal processing communities. 
 
The discussions will be based on some basic assumptions:   
 
1. Signal and noise value add linearly to any transducer position.  Therefore, the total signal 

observed consists of the signal that would occur in the absence of any microstructural-
induced noise and the noise waveform that would have existed for that probe position in 
the absence of a flaw.  The latter is not completely true since the volume occupied by the 
flaw will not generate noise signals.  This effect is partially compensated for by the fact 
that energy reflected from the flaw can backscatter from the microstructure, reflect again 
from the flaw, and contribute to the backscattered field. 

 
2. In a scanned inspection, the spatial correlation of the noise is on the order of the spatial 

extent of the flaw response.  This implies that, as the beam is scanned over the flaw, there 
will not be a rapid noise-controlled variation of signal, as shown in figure 49(b), but 
rather a gradual rise and fall, as shown in figure 49(a).  This is consistent with our 
observations on the FBH and SHA inclusions studied experimentally during the 
validation studies.  Figure 50 presents an example for the latter case.  This assumption 
implies that noise signals will enhance some flaw responses and depress others.  It should 
be noted, that it is inconsistent with the assumption used in Gilmore�s suggested noise 
adjustments of the GE Effective Reflectivity [29] to accommodate the effects of noise, as 
described in section 8.2.2.2.  The assumptions used in that work, that noise always adds 
to flaw signals, is more consistent with the behavior shown in figure 49(b).  
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FIGURE 49.  SCHEMATIC OF NOISE VARIATIONS IN A LINE SCAN THROUGH FLAW 
(a) CORRELATION LENGTH OF NOISE ON THE ORDER OF FLAW RESPONSE AND (b) 

CORRELATION LENGTH OF NOISE SMALL WITH RESPECT TO FLAW RESPONSE 
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FIGURE 50.  EXPERIMENTAL RESULTS OF LINE SCANS THROUGH NO. 2 SHAs  
(Note:  SHA n denotes the nth SHA in the total 8 SHAs of identical size.  Abscissa is 

in units of 10-mil scan increments.) 
 
A simple physical model can be used to qualitatively indicate the implication of these 
assumptions.  Consider a flaw producing a noise-free response So, and assume that it is 
embedded in an ensemble of noise signals n.  Here, So and n are considered to be complex 
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numbers or phasors representing the amplitude and phase of the indicated quantity.  Then the 
total signal, S, is given by 
 
 S S no= +   (36) 
 
To conceptually understand some of the properties of this addition, one can make the simplifying 
assumption that all noise signals have constant amplitude, N, but random phases, θ, with respect 
to So , 
 
   (38) n Ne

j= θ

 
where θ is uniformly distributed between 0 and 2π. 
 
Then simple trigonometry shows that 
 
   (39) oSS >=<
 
   (40) 222 NSS o +>=<
 
   (41) 22 NSS o =>−<
 
These assumptions lead to the idea that the expected magnitude, < >S 2 1/2 , will approach the 
noise-free signal when the signal-to-noise ratio is large (So/N>>1) and will approach the noise 
when signal-to-noise ratio is small (So/N<<1).  These results seem reasonable and suggest that a 
more complete model should be examined. 
 
The radar community has studied the case where the signals are narrow-band and detection is 
based on the envelope in some detail [57].  Suppose that the signal has an envelope A and that 
the in-phase and quadrature components of the noise are independent and normally distributed 
with variance σ2.  Then the density function for the envelope of the signal in the presence of 
noise is given by the Rician distribution 
 

 
( ) 
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σ+−

σ
= 2

222 2/
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Ar

r

o

erf   (42) 

 
where |  is the modified Bessel function of the first kind and zero order. o
 
Figure 51 shows the form of this distribution that is observed for various values of the signal-to-
noise ratio, A2/2σ2.  Examination of equation 42 shows that the Rician distribution approaches 
the Rayleigh distribution in the absence of signal (A = 0), and a normal distribution centered 
about the noise-free signal for high signal-to-noise ratio [58].  Hence, it is a more rigorous 
description of the ideas described in equations 39-41. 
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FIGURE 51.  RICIAN DISTRIBUTION FOR VARIOUS VALUES OF THE  

SIGNAL-TO-NOISE RATIO A2/2σ2 

 
Simulations have indicated that this approach has promise for ultrasonic examination of 
titanium, despite the fact that the assumptions of narrow-band signals and white noise are not 
rigorously valid [59].  In these simulations, a synthetic flaw signal of variable amplitude was 
superimposed on 256 noise waveforms were acquired from the same sample of Ti-64 at different 
positions with a 5-MHz, focused transducer.  In each waveform, the flaw was positioned at the 
same time interval, near the time when a signal would return from the center of the focal zone 
and, hence, near the time of peak root-mean-square noise.  The peak-to-peak signal in an 0.75-
µsec gate was then computed.  The distribution of peak-to-peak signals was compared to the 
predictions of the Rician Theory, as described further below. 
 
Figure 52 shows the noise-free value of the signal and its form when a significant amount of 
noise is added.  In this example, the signal and noise are in phase so that the signal is enhanced.  
However, a suppression of the signal is just as likely.  Because of the finite length of the gate and 
the fact that the signal is broadband, it would not be obvious what the appropriate values of A 
and σ would be if they were inserted into equation 42.  In the initial analysis, A was chosen as 
the average of the magnitudes of the two largest cycles in the synthetic flaw signal with σ2 being 
taken as the rms value of the noise data.   
 
When the predictions of equation 42, with the parameters evaluated in this way, were compared 
to the simulated data, good fits were obtained for high signal-to-noise ratios but not for low 
signal-to-noise ratios.  This difficulty was related to the finite length of the gate.  As discussed 
by Margetan, et al. [42] and in section 9.3, the distribution of gated peak-to-peak noise signals is 
best described by independently sampling the envelope distribution several times and selecting 
the maximum value.  The physical rationale is that there are multiple independent opportunities, 
N, to sample the noise in the gate, which are related to the ratio of gate length to pulse length as 
described in equation 33.  The same ideas should apply to the distribution of gated peak-to-peak 
flaw signal.  However, in this case, the noise distribution would be sampled in some cases and 
the flaw distribution in other cases.  To see if the Rician distribution was applicable in the time 
interval in which the flaw signal was present, the gate length was reduced to the duration of one 
independent event, 0.19 µsec in this case.  The simulation results and the Rician predictions were 
then found to be in good agreement.   
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FIGURE 52.  SYNTHETIC FLAW SIGNAL (a) NOISE FREE AND (b) A2/2σ2 = 4 

 
Based on these results, the model for gated peak-to-peak noise [42] was used for the case where 
a flaw signal was present.  The result of this extension is the model for signal plus noise 
distributions that is the subject of this section.  The essential idea was to again view the detection 
process as the independent sampling of N random variables.  N minus 1 (N-1) of these were 
taken to be the noise in the absence of a flaw, and are described by the Rayleigh distribution.  In 
the last one, equation 42 is used to describe the addition of signal and noise.  N is given by 
equation 33. 
 
Figures 53 and 54 present, respectively, a comparison of the predictions of this model to data 
simulated as previously described (figure 53) and the experimental data for one of the SHA 
samples (figure 54).  Figure 53 compares the results of this simulation (abruptly changing curve 
labeled histogram) to the gated Rician model for signal plus noise distribution (smooth curve) 
where the parameters have been selected as discussed above, where c is the constant first 
appearing in equation 33, which denotes N (taking c = 1).  X is a measure of the noise-to-signal 
ratio19.  It can be seen that the model smoothly fits the histogram data reasonably well for all the 
signal-to-noise ratios examined.  In the comparison to experimental data in figure 54, the solid 
line represents the predicted distribution.  There are only eight observations where the responses 
are nominally identical to no. 3 SHAs, so a meaningful experimental histogram cannot be 
constructed.  However, to qualitatively indicate that the data are consistent with the theory, 
square symbols have been placed on the abscissa at the discrete values of the responses from the 
eight nominally identical flaws.  Statistical tests of the goodness of fit have not yet been 
performed, but the fact that the discrete points generally fall within the major portion of the 
distribution is taken as qualitative, experimental confirmation of the theory. 

                                                 
19 Low values imply high SNR and high values imply low SNR. 
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FIGURE 53.  A COMPARISON OF SIMULATED DISTRIBUTIONS OF GATED PEAK-TO-

PEAK, SIGNAL-PLUS-NOISE DISTRIBUTIONS TO PHYSICALLY BASED MODEL 
PREDICTIONS IN Ti 6-4, SAMPLE K1 
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FIGURE 54.  A COMPARISON OF THE DISCRETE RESPONSES OF EIGHT 

SHAs TO THE PHYSICALLY BASED MODEL PREDICTIONS OF 
THE DISTRIBUTION 

 
It should be emphasized that when the distribution is obtained in this fashion it is difficult to 
determine whether the threshold is exceeded by the signal from a flaw or a microstructural 
inhomogeneities.  Hence, integrating this portion of the distribution above a fixed threshold 
would yield POI rather than POTD (see the definition of terms in subsection 5.2.12). 
 
9.5  BEAM MODULATION EFFECTS. 

The discussion in section 9.4 presumes that the only source of microstructure-induced variation 
between the signals from nominally identical flaws is additive random noise.  Another possible 
source is the fact that phase fluctuations can develop in an ultrasonic beam as it propagates 
through titanium [3, 59, and 60], which can lead to significant fluctuations in back surface 
signals and, presumably, flaw signals.  This is a subject that is still under study in the 
Fundamental Studies Task.  At the present time, it is handled empirically in the methodology.  A 
future goal should be to develop physical models that take this phenomenon into account. 
 
9.6  EFFECTS OF SURFACE ROUGHNESS. 

Surface roughness has the potential to limit the detection of hard-alpha defects in titanium 
billets. Qualitatively, surface roughness can deviate, attenuate, and fragment the incident beam 
pattern, which results in the degradation of the SNR.  These effects are somewhat analogous to 
the beam modulation effects discussed above.  Prior to this program, limited theory was 
available to quantitatively estimate the effects of surface roughness on the SNR.  Accordingly, a 
general theory was developed to determine the effects of surface roughness on (1) signals 
generated by subsurface (hard-alpha) inclusions, (2) the noise generated by the microstructure of 
the material, and (3) the ratio of the signal to the noise.  The effects of surface roughness on 
hard-alpha detection were estimated from this general formulation.  This study did not consider 
additional noise that might be generated by the billet surface. 

 88 



9.6.1  Measurements of Surface Roughness. 

To quantify the surface roughness on representative samples of billets, topographic 
measurements were made at the General Electric Corporate Research and Development  
(GECRD) laboratories.  A small region of the surface of billets was obtained from two 
manufacturers.  For two samples, the root-mean-square deviation of the roughness was 
approximately 35 µm, which is sufficiently close to the wavelength of sound in water:  λ=300 
µm at 5 MHz and 150 µm at 10 MHz to be of concern.  Roughness of this magnitude has the 
potential to have significant effects on the shape of the ultrasonic beam propagating into the 
billet.  The theories described below were used to quantify this effect. 
 
9.6.2  Theory for the Effects of Surface Roughness on Grain Noise. 

The first theory that was considered was the effects of surface roughness on backscattering from 
the microstructure.  A multitude of behaviors were found that heavily depended upon the rms 
height and correlation length of the surface roughness as well as the average size of the grains.  
Formulas were developed that showed how the change in the normalized rms noise (the noise in 
the presence of roughness divided by the noise in the absence of roughness) depended on these 
parameters [61-64]. 
 
Refer to reference 61 to obtain a fundamental model for the interaction of the rough surface with 
grain noise (an analytic series solution for the roughness-induced change in the grain noise was 
developed).  It was found that surface roughness can either enhance or decrease the grain noise, 
depending on the size and focal length of the transducer, the frequency, and the depth beneath 
the surface.  Experimental measurements conducted by Peter Nagy at Ohio State University were 
compared to the predictions of the new theory and found to be in good agreement.  To test and 
validate this series solution, a numerical and more exact solution to the same problem was 
developed [62].  The analytic series solution was also improved by allowing the microstructure 
to have a finite correlation length [64].  Using these models, it was discovered that normalized 
grain noise can be reduced (sometimes greatly) by using focused probes and measuring the noise 
at the focal depth of the probe [63].  This important result has striking consequences on the 
normalized SNR�and leads to a recommendation by the authors that the SNR be measured �on 
the fly.�  By this, it is meant that the noise should be determined from acoustic data obtained in 
the vicinity of the flaw.  More detail will be given in section 9.6.4. 
 
9.6.3  Theory for the Effects of Surface Roughness on the Signal From Subsurface Inclusions. 

A hard-alpha inclusion presents a weak ultrasonic contrast with the titanium matrix.  Since the 
contrast could be diminished further by surface roughness, the effects of surface roughness on 
the signal for a subsurface inclusion was calculated in the weak scattering limit [65-71].  Surface 
roughness was found to be particularly deleterious when the scatterers are near the surface.  In 
addition, it was shown how rough surfaces affected the signal from unvoided and uncracked 
worst-case hard-alpha inclusions. 
 
References 65, 66, and 69 discuss the effects of surface roughness on the signal, which comes 
from a subsurface inclusion.  An important factor is that the ultrasonic wave must pass through 
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the surface once on its way from the transducer to the flaw and then again on its way back to the 
transducer [65, 66, and 67].  This double transmission introduces important correlations in the 
phase and leads to a near-surface dead zone where the signal is greatly attenuated.  
Experimentally, it was also found and demonstrated that double reflection can be used to 
determine the correlation length and rms height of the rough surface.   
 
Roughness changes the rms signal from a subsurface flaw and introduces a random component in 
the signal.  To study this effect, a series solution was introduced for the scattering from a 
ellipsoidal weak scatterer beneath a rough surface with a Gaussian profile in reflectivity 
(representing the diffusion zone).  This series solution showed how the average and the variance 
of the signal depended the rms height and correlation length of the surface roughness as well the 
frequency and the radius of the transducer and its focal length [68 and 71].  It was also shown 
that the a frequency-dependent transmission constant is useful on a very wide range of 
experimental conditions, including those that occur in hard-alpha inspections in describing the 
effects of surface roughness on the average signal [70]. 
 
The possible existence of unvoided and uncracked hard-alpha inclusions is one of the nightmares 
of hard-alpha inspection.  Such an inclusion might consist of a central hard-alpha nugget and a 
more or less extended diffusion zone.  The ultrasonic reflection from such an inclusion depends 
crucially on the exact velocity profile of the inclusion.  There are two limiting cases.  The best 
case occurs when the velocity profile changes abruptly at an internal interface between the hard-
alpha nugget and the extended diffusion zone.  This abrupt change in properties leads to a 
relatively strong echo that increases with frequency.  The worst-case scenario is that the velocity 
changes continuously and smoothly from the center of the hard-alpha nugget through the 
diffusion zone and then through the host metal.  In this case, there is no strong echo.  
Furthermore, as the frequency is increased, the incident wave is guided through the inclusion 
with little back scattering; i.e., a large worst-case inclusion would be essentially invisible at 5 
MHz.  Additionally, surface roughness can further degrade the detectability of such worst-case 
inclusions.  Table 10 presents a guide showing just how bad the situation would be if hard-alpha 
inclusions were of this type.  The left three columns of table 10 consider the case of a smooth 
surface and the right three consider the case of a rough surface.  Here h is the rms height of the 
part surface roughness, B, is the e  radius of the inclusion (which has assumed to have a 
Gaussian variation in velocity to represent a diffusion zone), and  is the frequency at which 
the detectability is optimum [68]. 

1−

f opt

 
TABLE 10.  OPTIMUM FREQUENCY FOR DETECTION OF WORST-CASE HARD-

ALPHA INCLUSIONS BENEATH SMOOTH (FIRST THREE COLUMNS) AND 
ROUGH (SECOND THREE COLUMNS) SURFACES 

 
h(µm) b(mm) fopt(MHz) h(µm) b(mm) fopt(MHz) 

0.0 5.0 0.14 20.0 5.0 0.14 
0.0 1.0 0.71 20.0 1.0 0.71 
0.0 0.5 1.42 20.0 0.5 1.41 
0.0 0.1 7.09 20.0 0.1 5.97 
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From these results for the worst-case hard-alpha inclusion, it can be seen that there is a tradeoff 
between the ultrasonic inspection frequency and the size of the hard-alpha inclusions for the 
maximum detectability of the inclusion.  Most importantly, the detectability of an uncracked 
hard alpha that has a diffusion zone represented by the Gaussian variation in velocity appears to 
decrease for large flaws.  The presence of rough surfaces degrades the situation by attenuating 
the signal and inducing a near-surface dead zone. 
 
Special care is suggested in selecting the frequency for the inspection of parts with rough 
surfaces.  Best results are obtained at the optimal frequency, , which is inversely 
proportional to the size of the inclusion.  At low frequencies, the detection of relatively large 
inclusions is maximum; small inclusions are obscured, and the surface roughness is less 
important.  At high frequencies, large inclusions become invisible, but the detectability of 
smaller inclusions increases.  However, arbitrarily large frequencies cannot be used because 
surface roughness losses and grain scattering increase with increased frequency.   

f opt

 
In the conduct of this study, it was recognized that most hard-alpha inclusions are voided, a 
condition that leads to quite different conclusions.  Moreover, if the velocity does not vary 
smoothly, e.g., as in the �best case� described above, the results would also be different.  
Analysis of the data obtained in the Contaminated Billet Study (described in section 10.2), will 
be an important step towards determining the possibility that such a worst case inclusion can 
occur.   
 
The specific case of the detectability of inclusions in titanium billets was addressed in detailed 
numerical calculations that started from the topographic measurements (see section 9.6.1) of the 
rough surface performed at GECRD [72].  The transducer was modeled using the parameters for 
the multi-zone lens system in use at GE [73].  The billet was modeled as an infinitely long 
cylinder whose surface had the roughness of the actual billets measured by GE.  The fields inside 
the billet were then calculated using codes that had been previously developed for multizone lens 
design [74].  The roughness induced change in the signal strength was estimated by observing 
the field strength calculated in the focal zone.  A predicted change of several dBs was found in 
the signal for the roughest surface measured by GE.  These results are consistent with estimates 
obtained from the series expansion solutions mentioned above. 
 
9.6.4  Predictions of the Effects of Surface Roughness on the SNR. 

The SNR for an inclusion beneath a random rough surface was analyzed and predicted, including 
the dependence of the normalized SNR on the rms height and correlation length of the surface; 
on the size of the microstructure; and on the frequency, aperture, and focal length of the 
transducer [75].  This normalized SNR is defined as the ratio of the SNR, taking the surface 
roughness into account, to the SNR neglecting that roughness.  Figure 55 shows, for a particular 
surface condition, how the normalized SNR depends on the size of the scatterer, while figure 56 
shows its dependence on the size of the transducer.  The most important result is that focused 
probes reduce the effects of surface roughness on the SNR if the noise is measured on the fly, 
i.e., the noise should be determined from the acoustic sample that contains the flaw signal.  
Simple engineering formulas have been developed that allow the reader to estimate the signal-to-
noise ratio [75]. 
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(Note:  The surface correlation length is ls = 1.5 mm, the rms height is h = 0.02 mm, the 
correlation length of the microstructure is lm = 0.1 mm, while the inspection frequency is f 
= 10 MHz, and the radius of the transducer is r = 10 mm.) 

 
FIGURE 55.  NORMALIZED SNR (NSNR) AS A FUNCTION OF DEPTH FOR 

DIFFERENT RADII INCLUSIONS (A = 0.5, 1.0, AND 2.0 mm) FOR A 
FOCUSED TRANSDUCER 

 

(Note:  The radius of the inclusion is a = 0.5 mm, the surface correlation length is ls = 
1.5 mm, the rms height is h = 0.02 mm, the correlation length of the 
microstructure is lm = 0.1 mm, and the inspection frequency is f = 10 MHz.) 

 
FIGURE 56.  NORMALIZED SNR AS A FUNCTION OF DEPTH FOR 
DIFFERENT TRANSDUCER RADII (R=10, 20, AND 40 mm) FOR A 

PROBE FOCUSED AT 40 mm INSIDE THE METAL 
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This formalism was used to estimate the effects of surface roughness on SNR for hard-alpha 
inclusions [76].  The rms height was chosen to be 35 µm with correlation lengths of 1.25 cm and 
3.75 cm�to approximately agree with the topography measurements made at GECRD.  It was 
found that both the signal and the noise were attenuated by several dBs.  However, the 
normalized SNR was predicted to be unchanged if the noise was measured on the fly. 
 
9.6.5  Summary of Crucial Results. 

Computable theories were developed to determine the effects of surface roughness on the signal 
from subsurface inclusions, the noise generated by the material�s microstructure, and the SNR.  
All of these theories were developed and put into a computable form.  The crucial variables that 
enter into the formalism were identified as the rms height and correlation length of the surface 
roughness, the frequency and focal length of the transducer, as well as the size and position of 
the scatterer. 
 
These models were used to estimate the importance of surface roughness.  One important figure 
of merit was found to be the decrease in the average intensity of the beam.  At 5 MHz, the 
average beam intensity decreased by 4 dB for a 35-µm rms roughness.  Due to the greater ratio 
of surface roughness to wavelength, the decrease was 15 dB at 10 MHz.  More sophisticated 
calculations give similar (although somewhat smaller) estimates for the decrease in the average 
signal strength.  Thus, at 5 MHz the attenuation of the average signal is the same size as other 
variations in the theoretical model.  On the other hand, if a new system is developed and 
operated at 10 MHz, then surface roughness may well be the limiting factor in the detection of 
hard alpha when billets are fabricated. 
 
One of the major results of this study was the discovery that the deleterious effects of surface 
roughness on the SNR can be significantly reduced for focused probes if the noise is measured 
on the fly.  Model studies were conducted for the signal, the noise, and the signal-to-noise ratio 
for simulated hard-alpha inclusions in 5″ diameter billets with rough surfaces similar to those 
reported by GECRD.  A sophisticated model predicted that both the signal and the noise are 
attenuated by a significant amount, 2-3 dB for 35-µm rms surface roughness.  However, the 
model also showed that the signal-to-noise ratio was nearly unaffected if the noise and signal 
were estimated from the same acoustic sample, i.e., the noise is measured on the fly.  These 
results have important consequences for the detection of hard alpha using the multizone system.  
GECRD strongly suggests that the signal-to-noise ratio should be calculated on the fly and that 
this local signal-to-noise ratio should be used as the most important indicator of the presence of a 
flaw.  Other indicators may not work as well.  For example, suppose a threshold value is set for 
the signal to detect hard alpha.  Since surface roughness attenuates the average signal, certain 
flaws would not be detected by a fixed threshold but would be detected by an on-the-fly 
measurement of the signal-to-noise ratio.  The same objection holds if the noise is measured in 
only a few positions and a global signal-to-noise ratio is used for detection.  However, this 
objection is overcome by measuring the signal-to-noise ratio on the fly, since both the signal and 
the local noise are attenuated in the same way.  Based on these model predictions, it is clear that 
detectability is controlled by such a local measure of signal-to-noise ratio.  It will be a challenge 
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for the future to incorporate this insight into improved detection algorithms and the assessment 
of their capability. 
 
9.6.6  Conclusions. 

The rough surfaces characterized by GECRD change the predicted signal, at most, by 2 or 3 dBs 
for inspections such as those made with the multizone system operated at 5 MHz.  Even these 
modest effects can be removed if the SNR is measured on the fly.  Hard-alpha detection will be 
degraded for rougher surfaces (or for measurements made at higher frequencies).  In these cases, 
it is recommended that noise be measured on the fly. 
 
9.7  STRATEGIES FOR INCORPORATING PHYSICS-BASED DESCRIPTIONS OF NOISE 
AND SIGNAL-PLUS-NOISE IN THE NEW METHODOLOGY. 

In the initial implementation of the new methodology, the noise distribution was obtained 
empirically based on an assumed lognormal distribution.  The flaw response was determined 
from a physical model that would be exhibited in the absence of microstructure.  A statistical 
model was developed to describe the microstructure-induced deviations from this response based 
on the response measurements of a number of nominally identical reflectors.   
 
The physics-based models for the form of these distributions can be used in future versions of 
the methodology in several ways.  The noise models presented in subsection 9.3 provide a better 
description of the large amplitude tail of the distribution than the currently used lognormal 
distribution.  Where issues such as PFA or SNR are of concern, these physics-based models 
should improve results when fitted to experimental data. 
 
In some cases, one would like to estimate the POD and PFA without obtaining extensive 
empirical data.  Figure 57 schematically illustrates how this could be done.  Based on a few 
microstructural parameters such as the figure of merit (FOM) for noise generation, the 
microstructural contributions to the noise and signal distributions could be determined based on 
the approaches described in sections 9.3 and 9.4.  By incorporating the dependence of the flaw 
response on instrumentation parameters, the broadening of the signal distribution due to 
scanning could be added.  Flaw morphology effects would be added based on future work, as 
noted in section 10. 
 



Microstructural
Parameters

Instrumentation
and Scanning

Flaw
Morphology
Variability

Distribution of
Noise

Distribution of
Signal

POD

PFA

Signal 
Strength

P
ro

ba
bi

lit
y

D
en

si
ty Signal

Noise

Threshold

POD

PFA

 
 

FIGURE 57.  STRATEGY OF INCORPORATING PHYSICS-BASED DESCRIPTIONS OF 
SIGNAL AND NOISE DISTRIBUTIONS IN POD METHODOLOGY 

 
10.  FUTURE DIRECTIONS. 

10.1  RANDOM DEFECT BLOCK. 

At the conclusion of this work an important experiment was in progress, which was designed to 
provide a basis for testing the validity of the methodology.  Diffusion-bonding techniques had 
been used to construct a section of a billet on the order of 4 feet in length that contained a large 
number (on the order of 50) SHAs.  These consisted of right circular cylinders, with axes 
roughly parallel to the axis of the billet, and spheres.  The sizes, nitrogen contents, and 
inclinations had been selected to simulate a wide range of detection opportunities, presenting 
signal-to-noise ratios expected to cover a broad range [77].  Within certain constraints, the SHAs 
positions were random within the billet.   
 
This billet was to be scanned using both conventional and zoned techniques, leading to a set of 
response and signal-to-noise ratio measurements for each defect detected.  These observations 
were to be compared to the predictions of the physical model.  These experiments, conducted 
after the completion of the work but before the finalization of this report, demonstrated that the 
methodology requires further refinement to accurately predict the detection probabilities of 
defects in a realistic industrial environment.  In particular, they showed the need to 
�productionize� the methodology to account for a number of input parameters in the physics-
based models that are not fully controlled in an industrial environment and, thus, represent a 
source of additional variability.  For example, there will be a range of transducer characteristics 
that are consistent with calibration tolerances and the noise level will vary from billet to billet 
and from region to region within a billet.  Consequently, there will be additional variability 
associated with setup procedures, e.g., the inspector�s ability to reproducibly align the probes.  
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Follow-on work is planned to develop approaches to introduce these as well as any other sources 
of variability into a POD prediction that is fully representative of the industrial setting. 
 
10.2  CONTAMINATED BILLET STUDY. 

Because of a power failure during the processing of an ingot of nonrotor grade material, a set of 
billets has become available that contains over 60 indications that appear to be associated with 
hard-alpha inclusions.  These are being used in a variety of tasks ranging from studies of the 
deformation of hard-alpha inclusions during forging to improving the understanding of their 
detectability [78].  In the latter context, ten defects have been set aside for a detailed analysis, 
which include carefully documenting their ultrasonic response, determining the morphology of 
any pores and the spatial extent of enhanced nitrogen regions, extracting from this information 
models of the spatial variation of elastic constants and density, and using these to drive models 
predicting the response of the naturally occurring hard-alpha inclusions.  Good agreement will 
represent further validation of models.  Preliminary descriptions of the models and their 
validation can be found in reference 79.  This data will also significantly enhance the 
understanding of the relationship of flaw morphology to signal strength.  This information that 
will become an essential ingredient in estimating the detectability of naturally occurring hard-
alpha inclusions. 
 
10.3  PORTABLE POD. 

One of the major secondary objectives in the development of the new methodology was the 
development of a capability to provide estimates of the effects of changes in inspection 
procedures without requiring a new set of samples and experiments each time, i.e., the 
development of a so-called �portable� POD.  The basic ingredients of this idea are contained in 
section 5.2.8.  This shows that the POD for a given set of experimental conditions can be 
determined by an integral over a basic POD, which contains variables associated with those 
conditions as parameters.  The further development of this idea will be an important topic of 
future work. 
 
10.4  ADJUSTING FOR NATURAL-FLAW PARAMETERS. 

The POTD predictions reported in this document are for FBHs and SHAs.  As indicated in 
figures 9 and 57, additional work is required to introduce the effect of the morphology of 
naturally occurring defects on the signal distribution.  The Contaminated Billet Study will be an 
important source of data for this purpose.  The definition of the detailed strategies is currently in 
progress. 
 
11.  SUMMARY AND CONCLUSIONS. 

11.1  SUMMARY. 

This report has described a new methodology for determining POD.  Based on statistical 
detection theory, the underlying strategy was to determine distributions of signal and noise, from 
which the POD, PFA, and ROC curves can be determined.  Heavy use was made of physics-
based models during the inspection process to minimize the amount of empirical data that must 
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be gathered.  Although motivated by and applied to the case of the ultrasonic detection of 
internal inclusions in aircraft engine rotating components, the general approach is applicable to a 
much broader set of cases.   This report includes a general review of various methodologies for 
determining POD, a detailed discussion of the new approach, results of its application to the 
ultrasonic detection of flat-bottom holes and synthetic hard-alpha inclusions in flat plates under 
laboratory conditions, and a comparison of these results to those obtained by other 
methodologies.  Ongoing experiments and analysis, aimed at validation of the methodology and 
at extending its predictions to the detection of naturally occurring flaws, are also summarized.  
These experiments, completed after the work described herein but before the finalization of this 
report, show that the methodology needs to be �productionized� to account for a number of input 
parameters in physics-based models are not fully controlled in an industrial environment and, 
thus, represent a source of additional variability. 
 
As currently implemented, the methodology used physical models to describe the response of 
flaws in the absence of microstructural effects and the variations in this response produced by 
scan parameters.   By conducting limited empirical experiments in which the response of a 
number of identical targets are measured, the effects of microstructure and other sources of 
variability are inferred.  New tools that will further reduce the need for empirical experiments, 
based on physical models for the effects of microstructure on the ultrasonic responses, are also 
included.  The output of these tools is a distribution of possible signals rather than a 
deterministic signal strength. 
 
11.2  CONCLUSIONS. 

The new methodology has generated results that are in good agreement and verifies those 
obtained with existent methodologies for the case of flat-bottom holes in flat plates under 
laboratory conditions.  When applied to synthetic hard-alpha inclusions, it also provides results 
that are credible.  This illustrates the robustness of the technique, since there were difficulties 
with applying existing methodologies to the same synthetic hard-alpha inclusion data.  An 
experiment is currently in progress to validate these predictions. 
 
The primary initial motivation for the work was to develop an approach to make a probability of 
detection determination for internal flaws under conditions where other approaches were 
considered unsatisfactory.  However, in the course of this work, a number of other advantages of 
the methodology have been observed.  Because physical models are used during the inspection 
process, fewer samples are needed than in purely empirical methods, such as the â versus a 
approach, which have significant economic implications.  It has not been fully established how 
sample requirements of the new approach compare to earlier model-based approaches, such as 
the effective reflectivity (Re) method.  An explicit output of the new approach is a prediction of 
the probability of false alarm as well as the probability of detection which allows relative 
operating characteristic curves to be determined.  This is done so that the tradeoff between 
probability of detection (safety) and probability of false alarm (cost) of various candidate 
thresholds can be evaluated. 
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Although not explicitly demonstrated in this program, it is anticipated that the new methodology 
will have other important benefits.  By using physical models during the measurement process, it 
should be possible to:  
 
• estimate the probability of detection (POD) in physical situations where samples are not 

available or in candidate inspections that have not yet been implemented in hardware, 
producing a �portable� POD. 

• estimate the influence of part geometry on the POD. 

• generate information that will allow a more accurate analysis of the effects of various 
service and inspection scenarios on part lifetimes.   

There may also be important implications during service, when new inspections must be 
developed in response to unanticipated damage mechanisms and POD estimates are needed in a 
very short time frame.  In all of these case, there are significant economic implications, since 
there would be a reduced need to make a new set of POD samples every time a new part 
geometry, material, or failure mode is encountered in applications. 
 
Ultimately, the community must develop a better understanding of the POD of naturally 
occurring flaws as well as the POD of flat-bottom holes or synthetic hard-alpha inclusions.  The 
availability of validated models that include the effects of measurement geometry on the flaw 
response will be a significant aid in achieving this objective, since it will allow the responses of 
flaws from different regions of a part to be compared on an equal footing, thereby allowing all 
data to be aggregated and analyzed in a uniform way. 
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APPENDIX A�DETAILS OF FLAW SIGNAL MODELING AND VALIDATION 
 
An important aspect of the new methodology is using physical models, to the extent possible, to 
predict flaw signals under the influence of various inspection and material parameters.  This 
reduces the experimental effort and provides a basis for considering cases not covered by 
experiment after proper validation has occurred.  In the following discussions, the ultrasonic, 
noise-free flaw signal models and their validations will be described to demonstrate the accuracy 
and the range of applicability of these models. 
 
A.1  THE AULD-THOMPSON-GRAY FRAMEWORK. 
 
The ultrasonic flaw response modeling approach in this work was derived within the context of 
Auld�s electromechanical reciprocity relation [A-1] as has been demonstrated previously in the 
derivation of the Thompson-Gray measurement model [A-2].  Auld�s reciprocity relation 
provides a general and rigorous way to relate ultrasonic scattering theory to the absolute level of 
signals observed at the electrical ports of a transducer.  The key in this process is the 
specification of the wavefields in the vicinity of the flaw, in terms of scattering theory.  Within 
this framework, the Thompson-Gray measurement model describes an immersion inspection 
process where the flaw is small with respect to the ultrasonic beam width.  In this small flaw 
limit, the prediction of the overall signal is made in terms of the product of a number of factors, 
which may be thought of as theoretical modules that describe the flaw-scattering response, beam 
propagation, medium attenuation, and interface transmission effects.  In order to make absolute 
predictions of flaw response, inference of the system response obtained from a separate reference 
experiment is required.  The measurement model is formulated in the frequency domain.  For a 
given inspection geometry and flaw particulars, the absolute values of various radio frequency 
(RF) flaw waveforms can be predicted to great accuracy by using inverse Fourier transform 
techniques. 
 
Symbolically, the frequency domain components predicting the results of the inspection process, 
as predicted by the Thompson-Gray measurement model, can be summarized in the following 
expression: 
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The �diffraction, focusing, and other effects� submodule, which describes the effects of beam 
propagation, as influenced by part geometry, is calculated based on the Gauss-Hermite beam 
model [A-3].  The �probe efficiency factor� submodule, used to account for the system 
efficiency, is deduced from a measured RF reference signal in which backsurface echoes 
obtained from a fused quartz plate are normally used1.  This reference signal together with other 
geometry and material parameters, i.e., �interface transmission,� �phase & attenuation,� and 
�flaw signature,� are the necessary inputs to predict the signal response.  After the �spectral 
component of flaw signal� is evaluated at all frequency components within the transducer 
                                                 
1 The use of fused quartz as reference samples is attributable to R. S. Gilmore. 
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bandwidth, the time domain RF signal can then be synthesized via fast Fourier transform 
techniques.  The main advantage of this approach is the reduction of computational effort, while 
maintaining necessary modeling complexity, through the introduction of appropriate 
approximations in the various modules.  Using the Gauss-Hermite beam model, for example, 
enables the wave fields to be rapidly calculated in the regions of interest which allows the 
�diffraction, focusing, and other effects� submodule to be evaluated.  In contrast with other 
numerical methods such as finite element and boundary element, this beam model does not 
require as much computation time.  However, this advantage is gained by using paraxial 
approximation, which can break down at large angles of incidence or when using very high 
numerical aperture focused probes.  Determining the range of applicability through validation 
experiments will be discussed in subsequent experiments. 
 
The central part of the ultrasonic model development is the flaw signature, which describes the 
ultrasonic characteristics of flaws of various types and geometries.  This will be discussed in 
more detail in the following sections.  For extended flaws that are not small with respect to the 
beam, the form of equation A-1 must be modified in various ways, as will also be discussed. 
 
A.2  APPLICATION TO FLAT-BOTTOM HOLES (FBHs) 
 
The FBH is of considerable interest because of its role as an industrial reference standard.  Note 
for example, the first recommendation in section 4.1.  The ability to detect FBHs of various sizes 
in specified situations was a major component of the Titanium Rotating Component Review 
Team report [A-4], as noted in section 4.1. 
 
To the best knowledge, an exact model for the response of the FBH is not available.  In principle, 
a model could be developed based on numerical approaches such as the finite element or finite 
difference method.  Since such calculations are quite computationally intensive in three-
dimensions and the models are intended to be used repeatedly throughout the methodology, as 
well as other applications such as system design, it was decided that approximate models would 
run more quickly on a PC or workstation.  An accuracy target of 3 dB, based on a consensus 
evaluation of the reproducibility of experiments in an industrial setting, was established.   
 
A review of the literature indicated that a number of models were available, and examination of 
their assumptions indicated that each was most useful in different regions of wavelength, beam 
diameter, or flaw size space.  Pioneering work in this area was conducted by Krautkrämer [A-5], 
who developed a model for the far field response of an FBH.  Three more recent models, namely, 
the method of optimal truncation [A-3], the plane-wave Kirchhoff approximation [A-6], and the 
finite-beam Kirchhoff approximation, were used in this study along with the plane-wave 
Kirchhoff approximation, which is closely related to Krautkrämer�s original work.  In each case, 
the effects of the circular-cylindrical surface, created by forming the shanks of the FBH, are 
neglected and the FBH response is approximated by a penny-shaped crack.  A hybrid strategy of 
combining these three models was then adapted for this situation [A-7]. 
 
In modeling the flaw-scattering responses for the cases where the flaw size was smaller than the 
beam width, a number of traditional approaches predicting a quantity known as the scattering 
amplitude under the assumption of plane-wave ensonification are readily available.  These define 
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the flaw signature module in equation A-1.  One such plane-wave solution, the Method of 
Optimal Truncation (MOOT) [A-8], is particularly suitable for this FBH study.  This method 
expresses the plane-wave solution in terms of series expansion truncated optimally in the least-
squares sense.  Its predictions can be considered nearly exact when the flaw is small with respect 
to the beam.  The plane-wave Kirchhoff model is another plane-wave solution (hereafter denoted 
by PKIR with KIR referring to Kirchoff [A-6]).  In PKIR, the high-frequency Kirchhoff 
approximation, is used for plane-wave-illuminated elliptical cracks whose local reflectivity is 
approximated by that of an infinite plane.  Simple closed-form solutions can be obtained for such 
a problem, allowing very rapid evaluations.  However, the assumption that the local reflectivity 
can be approximated by that of an infinite plane (Kirchhoff approximation) limits the 
applicability of this approximation to cracks whose dimensions are on the order of the ultrasonic 
wavelength or larger.  At longer wavelengths, representation of local reflectivity by that of an 
infinite plane begins to break down.  
 
For a flaw size comparable to or greater than the beam width, however, the amplitude variation 
of the incident sonic field over the surface of the flaw becomes significant and must be carefully 
treated, since plane-wave illumination is no longer a valid approximation.  An approach 
combining the Kirchhoff approximation with numerical integration has been developed for this 
purpose [A-9].  In this approach, the Kirchhoff assumption along with other boundary conditions 
are used to simplify Auld�s reciprocity relation.  This simplification allows the scattered flaw 
response to be approximated by a numerical integration over the flaw area of the square of the 
incident displacement field, which can be modeled by the Gauss-Hermite series expansion for 
the transducer radiation pattern [A-3].  In this case, equation A-1 is no longer valid but must be 
generalized to include an integral over the flaw surface.  This approximation is known as the 
finite-beam Kirchhoff approximation (FKIR).   
 
In their current implementation, both PKIR and FKIR are generally believed to be applicable to 
cases of small tilt angles of the planar disk relative to the axis of the sound beam and to flaw-
wavelength ratios greater than 1 or 2.  The flaw-wavelength ratio is defined as 2πa/λ where a is 
the flaw radius and λ is the ultrasonic wavelength.  The notation ka is sometimes used as a 
shorthand for this important physical quantity.  ka describes how the wavelength scales with 
respect to the size of the flaw and, hence, whether one is in a regime in which various 
interferences might occur that would influence the flaw response.  Whereas MOOT, valid for all 
tilt angles, is numerically limited to 2πa/λ< 10, FKIR and PKIR apply to small tilt angles and 
flaws for which 2πa/λ>1 or 2.  In addition, both PKIR and MOOT are limited to flaws small with 
respect to the beam dimensions, whereas FKIR can handle larger flaws.  In the strictest sense, 
MOOT is valid only for circular cracks while PKIR and FKIR can be applied to cracks of 
elliptical or more complex shape.  Table A-1 summarizes these ranges of validity along with 
their relative computation speeds. 
 
To determine the accuracy of the model predictions, extensive experimental data were taken 
from a titanium specimen using three different transducers at various angles of incidence and 
focal depths.  This titanium specimen was fabricated from a Ti-6Al-4V ring forging machined 
into a flat plate.  It contained 64 FBHs, 16 each of sizes no. 1 to 4, all normal to the entry (front) 
surface, and with hole ends at 1″ depth below the entry surface.  The convention of designating 
the diameter of an FBH in units of 1/64″ (0.4 mm) is still being used.  The three transducers were  
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TABLE A-1.  RANGE OF VALIDITY OF VARIOUS APPROXIMATE MODELS FOR FBHS 
 

 
Model 

 
2πa/λ 

Flaw size
Beam size

  
Tilt Angle 

Computational 
Speed 

FKIR > 1 or 2 all Small medium 
PKIR > 1 or 2 small Small fast 
MOOT < 10 small All fast 

 
chosen to be 5-MHz broadband, focused immersion probes with nominal values of 1″ diameter 
and 8″ focal length.  Independent beam mapping experiments were used to deduce the effective 
diameter and geometrical focal length of each transducer, as summarized in table A-2.   
 

TABLE A-2.  PARAMETERS OF TRANSDUCERS USED 
 

 
Transducer 

 
Make 

Frequency 
(MHz) 

Diameter 
(inch) 

Geometrical 
focal length (inch) 

True focal 
length (inch) 

1 Panametrics V307 5 1 11.14 8.50 
2 Panametrics V307 5 1 10.80 8.40 
3 Ultran WS100-5-P8 5 1 7.79 6.70 
4 GE CRD94-6 10 1.5 9.79 9.25 

 
The geometrical focal lengths of the first two transducers (hereafter referred as transducers no. 1 
and no. 2; made by the same vendor) were approximately 11″ in water while the third (transducer 
no. 3), made by another vendor, was about 3″ shorter.  The true focal length of the transducers 
also varies but to a lesser extent.  Here the geometrical focal length is e the focal distance that 
would be computed by a (high-frequency) ray analysis, whereas the true focal length is the 
distance to the peak pressure point; a distance which is smaller due to diffraction.  Table A-2 also 
lists the parameters of a 10-MHz broadband, focused probe of 1.5″ diameter (transducer no. 4), 
which was used in the synthetic hard-alpha inclusion study (see section A.3). 
 
Using each of the first three transducers, the FBH sample was scanned ten times following a 
matrix involving three positions of the focal plane with respect to the flaw plane (transducer 
focused 1/4″ above the flaw, on the flaw, and 1/2″ below the flaw) and three angles of incidence 
(0°, 2.5°, and 5° with respect to the normal) with one repeat of the �normal incidence focused on 
flaw� case.  Scanning step size was 0.010″ (10 mils) in both x and y directions.  The data 
obtained are stored, providing  
 
• a basis for computing noise (from data when the beam was well away from any flaws), 
 
• the mean flaw response (average of the maximum response of the 16 nominally identical 

flaws) used to validate the theory, and 
 
• distributions of flaw response (based on the variabilities of the response of nominally 

identical flaws).   
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Further details may be found in reference A-10. 
 
Figure A-1 displays three experimental RF waveforms and the corresponding model predictions 
by the FKIR for a typical no. 4 FBH response at normal incidence when observed with 
transducer no. 3 focused on the plane of the FBHs.  This illustrates the good agreement that can 
be achieved in both amplitude and phase for one on-axis and two offset cases.  Recall that this is 
an absolute comparison, with no adjustable parameters, and the overall system efficiency being 
established by the reference experiment.   
 
In figures A-2 through A-4, comparisons are made between the experiments and predictions of 
the three individual models for different tilt angles.  The experimental data for this series are 
taken using transducer no. 2, with the beam again focused on the plane of FBHs.  The peak-to-
peak model predictions, along with mean experimental values (averaged over the 16 nominally 
identical holes in each of four sizes), are plotted in figure A-2 for the case of normal incidence.  
It is seen that all models do a reasonable job.  Because of the finite-beam effect, a deviation of 
MOOT and PKIR predictions from experiments at the larger hole sizes, is expected since the 
approximation of plane-wave ensonification is no longer valid.  It is also interesting to see that a 
�bump� occurring near ka = 1 (i.e., near the no. 1 hole size), as predicted by MOOT, is consistent 
with the experimental data.  PKIR and FKIR, on the other hand, do not include a prediction of 
this bump feature due to the simplification in the Kirchhoff approximation.  This bump, as 
predicted by MOOT, is attributed to a resonance generated by the interaction between Rayleigh 
waves propagating on the face of the flaw and the flaw edges.   
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FIGURE A-1.  ABSOLUTE AMPLITUDE AND PHASE COMPARISONS BETWEEN 
MODEL AND EXPERIMENT FOR A TYPICAL NO. 4 FBH AT NORMAL 

INCIDENCE USING TRANSDUCER NO. 3 FOCUSED ON HOLE 
 
At a 2.5° tilt angle in water (i.e., a tilt angle of approximately 10° in the titanium), model 
predictions shown in figure A-3 follow a trend similar to the normal incidence cases.  Note that 
the differences between the models have been reduced because of the smaller projected FBH 
size, and the resonance bump has shifted beyond the region of ka =1.  When the tilt angle 
increases to 5°, leveling off of the response occurs around FBH diameters of 1.5 mm, i.e., 0.059″ 
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or approximately 4/64″ (figure A-4).  Examination of time domain responses suggests that this 
leveling off is associated with a separation of the tip-diffracted signals from the leading and 
trailing edges of the flaw.  Note that edge-diffracted waves occurring in FBH examinations will 
be quantitatively different from those in crack examinations, which are modeled by MOOT.  
This is because the edges of a FBH have 90° angles and those of a crack have an 180° angle.  
However, the overall situations are expected to be similar. 
 

●

●

●

●

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

1

2

3

4

5

6

7

FBH Diameter (mm)

Model-MOOT

Model-FKIR

● Experiment

Model-PKIR

 

K
a 

 
FIGURE A-2.  PEAK-TO-PEAK SIGNAL COMPARISONS BETWEEN MODEL AND 

EXPERIMENT USING TRANSDUCER NO. 2 FOCUSED ON FBHs AT NORMAL 
INCIDENCE 
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FIGURE A-3.  PEAK-TO-PEAK SIGNAL COMPARISONS BETWEEN MODEL AND 
EXPERIMENT USING TRANSDUCER NO. 2 FOCUSED ON FBHs AND 

2.5° TILT ANGLE IN WATER 
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FIGURE A-4.  PEAK-PEAK SIGNAL COMPARISONS BETWEEN MODEL AND 
EXPERIMENT USING TRANSDUCER NO. 2 FOCUSED ON FBHs AND 

5° TILT ANGLE IN WATER 
 
From previous theoretical discussions in section A.2, it is noted that MOOT, as an exact plane-
wave incidence model, can successfully predict the resonance around ka = 1, which is accurate 
for smaller FBH sizes where the finite-beam effect is not significant.  However, the accuracy 
drops as the FBH size increases.  In contrast, FKIR is good at handling finite-beam effects for 
large FBH sizes (high 2πa/λ) but is less accurate in the smaller size region (low 2πa/λ).  On the 
other hand, PKIR, as an approximated plane-wave model, performs similarly to MOOT when the 
FBH size becomes larger and has the same characteristics as FKIR in the small size region.  Each 
of these theoretical expectations is confirmed by the data shown in figures A-2 through A-4. 
 
For this purpose, however, a single model is needed that gives accurate predictions over the 
entire range of flaw sizes.  Given that MOOT is best for small flaws and FKIR is best for large 
flaws, a means is desired to smoothly join these two.  This could be accomplished using a 
hypothesized simple hybrid relationship that is suitable for a wide range of FBH sizes by 
combining the strength of each of the three models: 
 
 Hybrid Model FBH response = 

PKIR
 (A-2) MOOT FKIR×

 
In the small flaw limit, the response will be predicted by MOOT, since PKIR ~ FKIR.  In the 
large flaw limit, the response will essentially be predicted by FKIR, since MOOT ~ PKIR.   
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The usefulness of equation A-2 can be seen from figure A-5, where a single hybrid model curve 
is considered to be a better match with experimental data for the entire range of FBH sizes than 
the three individual model curves, each of which is only accurate over a portion of the size range.   
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FIGURE A-5.  PEAK-TO-PEAK SIGNAL COMPARISONS BETWEEN HYBRID MODEL 
PREDICTION AND EXPERIMENT USING TRANSDUCER NO. 2 AT NORMAL 

INCIDENCE, FOCUSED ON FBHs 
 
Tables A-3 through A-5 present a comparison of the  hybrid model predictions to mean 
experimental data for each of the 36 cases examined (4 flaw sizes x 3 focal depths x 3 tilt angles) 
for the three transducers used.  It can be seen, based on a better than 40% agreement between the 
EXPT and MODL responses, that, in general, the criteria of 3-dB accuracy has been realized.  
The one exception is for the no. 4 FBH, viewed with transducer no. 3, and focused 0.5 inch 
above the flaw at a tilt of 2.5° in water.  Even here, the disagreement is only 3.6 dB. 
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TABLE A-3.  COMPARISON OF AVERAGED PEAK-TO-PEAK FBH SIGNALS AND THE 
CORRESPONDING STANDARD DEVIATIONS (DENOTED BY EXPT) TO MODEL 

PREDICTIONS FOR ALL CASES USING TRANSDUCER NO. 1 
 

   Flat-Bottom Hole Size  

Focal Depth 
Incident 
Angle No. 4 No. 3 No. 2 No. 1  

1″ 0 3824  105 2280  78 1049  31 399  40 EXPT 
  [3888] [2279] [1043] [266] FKIR 
  (4551) (2525) (1141) (424) MOOT 
  {4492} {2527} {1123} {281} PKIR 
  <3939> <2277> <1060> <401> MODL 

1″ -2.5 3054  96 2014  80 1007  48 378  34  
  [3195] [2048] [1002] [266]  
  (3588) (2192) (1064) (411)  
  {3546} {2199} {1047} {272}  
  <3233> <2041> <1018> <402>  

1″ 5 1446  70 1347  48 883  28 365  33  
  [1340] [1184] [718] [216]  
  (1552) (1348) (840) (367)  
  {1561} {1381} {823} {245}  
  <1332> <1156> <733> <324>  

1.25″ 0 3411  120 2069  85 956  33 343  34  
  [3541] [2086] [963] [246]  
  (4277) (2356) (1074) (391)  
  {4217} {2372} {1054} {264}  
  <3549> <2072> <994> <364>  

1.25″ -2.5 2731  109 1812  73 899  40 322  34  
  [3053] [1954] [955] [253]  
  (3394) (2076) (1013) (382)  
  {3394} {2091} {991} {257}  
  <3053> <1940> <976> <376>  

1.25″ 5 1472  55 1351  53 853  27 337  32  
  [1401] [1191] [707] [210]  
  (1598) (1358) (830) (356)  
  {1612} {1364} {808} {238}  
  <1389> <1186> <726> <314>  

0.5″ 0 2905  77 1713  68 782  33 298  31  
  [3129] [1811] [821] [208]  
  (3557) (1981) (898) (331)  
  {3482} {1959} {871} {218}  
  <3196> <1831> <846> <316>  

0.5″ -2.5 2243  74 1431  52 715  35 275  27  
  [2458] [1567] [762] [201]  
  (2695) (1658) (807) (306)  
  {2652} {1657} {793} {207}  
  <2498> <1568> <775> <297>  

0.5″ 5 1015  54 894  38 583  27 251  25  
  [964] [855] [518] [155]  
  (1078) (957) (598) (265)  
  {1078} {980} {597} {178}  
  <964> <835> <519> <231>  

1″ 0 3827  106 2274  90 1046  35 398  40  
  <3939> <2277> <1060> <401>  

 
Note:  FKIR (numbers within []) represents the finite-beam Kirchhoff model, MOOT (numbers with ()) is the method of optimal truncations, 
PKIR (numbers within { }) denotes the plane-wave Kirchhoff model and MODL (numbers within <>) designates the hybrid model prediction as 
computed by using equation A-2.  Measurement units are focal depth � inch; incident angle � degree; FBH size - no. 1 = 1/64″, no. 2 = 2/64″, 
etc.; FBH amplitude - millivolts. 
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TABLE A-4.  COMPARISON OF AVERAGED PEAK-TO-PEAK FBH SIGNALS AND THE 
CORRESPONDING STANDARD DEVIATIONS (DENOTED BY EXPT) TO MODEL 

PREDICTIONS FOR ALL CASES USING TRANSDUCER NO. 2 
 

   Flat-Bottom Hole Size  

Focal Depth 
Incident 
Angle No. 4 No. 3 No. 2 No. 1  

1″ 0 3940  113 2368  93 1086  40 410  41 EXPT 
  [3888] [2279] [1043] [266] FKIR 
  (4620) (2566) (1157) (422) MOOT 
  {4535} {2551} {1134} {283} PKIR 
  <3961> <2292> <1064> <397> MODL 

1″ -2.5 3189  96 2077  66 1050  50 401  35  
  [3148] [2023] [991] [263]  
  (3596) (2207) (1070) (410)  
  {3544} {2210} {1056} {276}  
  <3194> <2020> <1004> <391>  

1″ 5 1353  73 1296  51 874  29 377  34  
  [1322] [1182] [722] [218]  
  (1529) (1352) (836) (369)  
  {1528} {1365} {819} {244}  
  <1323> <1171> <737> <330>  

1.25″ 0 3381  99 2074  83 966 43 345  35  
  [3513] [2073] [955] [244]  
  (4229) (2347) (1072) (394)  
  {4189} {2356} {1047} {262}  
  <3547> <2065> <978> <367>  

1.25″ -2.5 2856  94 1899  75 949  44 321  33  
  [2977] [1916] [941] [250]  
  (3397) (2082) (1016) (386)  
  {3341} {2070} {984} {256}  
  <3027> <1927> <972> <377>  

1.25″ 5 1343  57 1300  55 849  27 350  35  
  [1390] [1197] [716] [213]  
  (1603) (1374) (832) (360)  
  {1609} {1393} {819} {240}  
  <1385> <1181> <727> <320>  

0.5″ 0 2906  85 1709  53 777  29 301  32  
  [3047] [1766] [802] [203]  
  (3410) (1894) (854) (321)  
  {3356} {1888} {839} {210}  
  <3096> <1772> <816> <310>  

0.5″ -2.5 2264  85 1433  50 718  41 255 26  
  [2372] [1515] [739] [196]  
  (2647) (1624) (787) (310)  
  {2605} {1622} {774} {202}  
  <2410> <1517> <751> <301>  

0.5″ 5 952  48 865  34 576  22 235  27  
  [918] [818] [499] [150]  
  (1042) (922) (581) (258)  
  {1045} {943} {569} {170}  
  <915> <800> <510> <228>  

1″ 0 3928  103 2345  90 1083  36 412  41  
  <3961> <2292> <1064> <397>>  

 
Note:  FKIR (numbers within []) represents the finite-beam Kirchhoff model, MOOT (numbers with ()) is the method of optimal truncations, 
PKIR (numbers within { }) denotes the plane-wave Kirchhoff model and MODL (numbers within <>) designates the hybrid model prediction as 
computed by using equation A-2.  Measurement units are focal depth � inch; incident angle � degree; FBH size - no. 1 = 1/64″, no. 2 = 2/64″, 
etc.; FBH amplitude - millivolts. 
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TABLE A-5.  COMPARISON OF AVERAGED PEAK-TO-PEAK FBH SIGNALS AND THE 
CORRESPONDING STANDARD DEVIATIONS (DENOTED BY EXPT) TO MODEL 

PREDICTIONS FOR ALL CASES USING TRANSDUCER NO. 3 
 

   Flat-Bottom Hole Size  
Focal Depth Incident 

Angle 
No. 4 No. 3 No. 2 No. 1  

1″ 0 7899  195 4808  130 2243  78 763  72 EXPT 
  [7712] [4684] [2201] [569] FKIR 
  (9001) (5062) (2294) (883) MOOT 
  {8805} {4953} {2201} {550} PKIR 
  <7883> <4787> <2294> <913> MODL 

1″ -2.5 4286  127 3306  110 1896  81 700  46  
  [5724] [3840] [1949] [529]  
  (6943) (4366) (2141) (846)  
  {6845} {4329} {2088} {548}  
  <5806> <3873> <1998> <817>  

1″ 5 2989  126 2641  94 1729  50 647  57  
  [2223] [2032] [1310] [410]  
  (2508) (2392) (1533) (743)  
  {2521} {2433} {1549} {475}  
  <2211> <1998> <1296> <641>  

1.25″ 0 5930  137 3755  152 1786  57 597  56  
  [5382] [3315] [1586] [415]  
  (6732) (3757) (1699) (638)  
  {6665} {3749} {1666} {417}  
  <6741> <3792> <1617> <635>  

1.25″ -2.5 3910  108 3124  89 1768  80 647  49  
  [4316] [2813] [1417] [385]  
  (5247) (3242) (1580) (619)  
  {5207} {3247} {1551} {405}  
  <4349> <2809> <1443> <588>  

1.25″ 5 2683  98 2353  99 1540  46 560  60  
  [2123] [1780] [1088] [334]  
  (2379) (2125) (1318) (608)  
  (2400) (2165) (1304) (387)  
  <2104> <1747> <1100> <525>  

0.5″ 0 4558  109 2659  92 1234  39 431  48  
  [4842] [2865] [1321] [337]  
  (5544) (3070) (1366) (527)  
  {5530} {3111} {1382} {346}  
  <4854> <2827> <1306> <513>  

0.5″ -2.5 2365  68 1716  54 965  44 365  30  
  [3577] [2308] [1142] [305]  
  (3862) (2402) (1187) (489)  
  {3844} {2437} {1177} {309}  
  <3594> <2275> <1152> <483>  

0.5″ 5 1641  73 1378  41 882  33 349  37  
  [1301] [1127] [703] [215]  
  (1303) (1275) (827) (377)  
  {1310} {1295} {819} {249}  
  <1294> <1110> <710> <326>  

1″ 0 7962  173 4847  172 2280  67 764  69  
  <7883> <4787> <2294> <913>  

 
Note:  FKIR (numbers within []) represents the finite-beam Kirchhoff model, MOOT (numbers with ()) is the method of optimal truncations, 
PKIR (numbers within { }) denotes the plane-wave Kirchhoff model and MODL (numbers within <>) designates the hybrid model prediction as 
computed by using equation A-2.  Measurement units are focal depth � inch; incident angle � degree; FBH size - no. 1 = 1/64″, no. 2 = 2/64″, 
etc.; FBH amplitude - millivolts. 
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A.3 APPLICATION TO SYNTHETIC HARD-ALPHA INCLUSIONS (SHAs). 
 
The ultrasonic modeling of inclusion signals follows the same Auld-Thompson-Gray approach 
framework as the previous FBH models.  In this work, two extensions of the existing models 
were developed.  The effort first focused on inclusions of cylindrical shape at normal incidence 
[A-10] and then extended it to arbitrary flaw morphology at oblique incidence [A-11].  In both 
extensions the paraxial approximation is utilized in the beam model through the Gauss-Hermite 
series expansions, a feature that is common with the FBH models. 
 
To reduce the modeling complexity and the computation time, various approximations are again 
necessary given the constraints of the memory and processing capacity of the available 
computing platforms.  In modeling, weak scatterers such as the hard-alpha inclusions, i.e., the 
Born approximation, has been extensively studied in the literature (see for example [A-12 and 
A-13]).  This approximation simplifies the modeling effort by replacing the unknown scattered 
field quantities that are in the kernel of various integral representations with their incident 
counterparts on the surface or within the volume of the flaw.  In our new formulation, the Auld�s 
surface reciprocity relationship was first converted into a volumetric form via Gauss� theorem.  
The paraxial and Born approximations were used to reduce the new form to a three-dimensional 
volumetric integral that involved the square of incident displacement field and the inclusion 
properties.  Numerical integration was then conducted to carry out the computation.  The 
symbolic form for this model can be expressed as 
 

  (A-3) dV property) acoustic and f(material
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In the ordinary context of the Born approximation, both the density and wave speed are assumed 
to be very close to those of the host materials, i.e., the flaw is assumed to possess a weak (small) 
impedance mismatch.  Intuitively, this weak impedance assumption is consistent with the Born 
approximation that replaces the wavefield quantities within the inclusion by the incident field 
counterparts.  However, from a comparative study with the high-frequency Kirchhoff 
approximation [A-14], both approximations (Born & Kirchhoff) have been shown to be 
equivalent in modeling the leading specular (front surface) responses.  Thus, it is unnecessary to 
impose this weak impedance assumption.  The models with and without the weak impedance 
assumption are referred below as �weak Born model� and �normal Born model.�  As will be 
shown later, the normal Born model offers better accuracy in comparison with the experimental 
data for inclusions of higher impedance.  The full range of applicability of these two models is 
yet to be determined. 
 
The third model is an ad hoc surface formulation that represents a natural extension to the 
previous high-frequency finite-beam Kirchhoff model (FKIR) for FBH.  In that approach, the 
Kirchhoff approximation along with other boundary conditions are used to simplify the Auld�s 
reciprocity relation.  This simplification allows the scattered flaw response to be approximated 
by a two-dimensional numerical integration over the flaw surface of the square of the incident 
field.  In the present case of scattering from an inclusion, the Kirchhoff assumption is replaced 
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by ad hoc boundary conditions on the inclusion-host interface.  In essence, one replaces a unity 
reflection coefficient (FBH) with one determined by the relative acoustic impedances of the SHA 
and host material.  The resulting formulation closely resembles that of previous Kirchhoff 
models for FBHs, except that an additional surface integration on the inclusion back wall, and a 
factor for time delay between front and back wall are needed.  The symbolic expression of the ad 
hoc model is given by  
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The ad hoc surface model provides a simple and fast tool for predicting the ultrasonic inclusion 
responses, especially when numerous C-scan simulations are required.  Since this model 
approximates the scattered field by reflected wave components only, larger modeling errors are 
expected when other types of responses are present and specularly reflected waves are no longer 
the dominant components.  This situation occurs, for example, when the ultrasonic beam is at a 
large angle to the inclusion axis and the diffracted wave components emitted from the edges of 
the cylindrical inclusion become significant. 
 
The two new Born volumetric models are superior to the ad hoc inclusion model in that they are 
readily applied to relatively weak inclusions of arbitrary morphology as long as the geometry, 
material, and acoustic properties (or their close estimates) are available everywhere within the 
inclusion boundaries.  The trade-off is that the three-dimensional volumetric integration will 
consume extra computing time compared to the ad hoc model�s double, two-dimensional surface 
integration. 
 
The ultrasonic models described above have been validated using experimental data obtained 
from two rectangular Ti-6Al-4V ring forging blocks containing synthetic hard-alpha (SHA) 
inclusions of cylindrical shape.  These inclusions were specially prepared [A-15] to 
accommodate prescribed nitrogen and oxygen concentrations for the purpose of simulating the 
real, hard-alpha defects.  One block (hereafter labeled as block no. 1) has a total of 64 SHAs of 
2.71 wt.% nitrogen and 0.387 wt.% oxygen ranging from no. 2 to 5 sizes with 16 of each size.  
The other (block no. 2) contains 32 SHAs of 5.88 wt.% nitrogen and 0.465 wt.% oxygen with 
eight of each size.  Here the authors have again adopted the flat-bottomed hole convention that 
size no. 1 represents the actual diameter in units of 1/64″, etc.  As was shown in table A-1, a new 
10-MHz broadband transducer (transducer no. 4) was added to test the effects of higher 
frequency and resolution.  It has a diameter of 1.5″ with a measured true focal length of 9.3″ and 
an estimated geometrical focal length of 9.8″.  Experiments were conducted in the same way as 
the FBH experiments. 
 
The accuracy of signal modeling, illustrated in figure A-6, compares the RF waveforms from 
experimental measurement with those from the two model predictions for a typical no. 5 SHA in 
block no. 1.  The data were obtained with transducer no. 2 focused on the SHAs circular end at 
normal incidence.  This shows that the absolute amplitude and phase predicted by both models 
are in good agreement with the experimental data.  Note that, in the Born model prediction, a 
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slight extra time delay is also seen for the phase-reversed back wall echo.  This was expected 
since, in the Born model, the incident wave was employed in the kernel of the integral, an 
approximation which does not account for the wave speed difference between the inclusion and 
the host media.  The overall peak-to-peak amplitude comparisons are summarized in table A-6 
for SHAs sizes no. 4 and 5.  Transducer no. 2 was used, focused on SHAs at normal incidence 
using block no. 1.  The experimental amplitudes listed are the average of six representative 
SHAs of each size, leaving out the maximum and minimum ones as outliers.  One can observe 
that the agreements are even better than seen in figure A-6, to within 7% relative error, because 
the SHA signal fluctuations due to the microstructure change are smoothed out by the averaging. 
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FIGURE A-6.  ABSOLUTE AMPLITUDE AND PHASE COMPARISONS BETWEEN 
MODEL AND EXPERIMENT FOR A TYPICAL NO. 5 SHA IN BLOCK NO. 1 USING THE 
5-MHz TRANSDUCER NO. 2 FOCUSED ON THE SHA END AT NORMAL INCIDENCE 

 
TABLE A-6.  PEAK-TO-PEAK SIGNAL AMPLITUDE COMPARISONS BETWEEN 
MODEL AND EXPERIMENT USING BLOCK NO. 1 AND TRANSDUCER NO. 2 AT 

NORMAL INCIDENCE, FOCUSED ON SHAs 
 

SHA Size Experiment Weak Born Model Ad hoc Model (mV) 
No. 5 337 355 359 
No. 4 247 234 241 

 
Figure A-7 plots the peak-to-peak amplitudes of averaged experimental data and model 
predictions vs. various SHA sizes.  In this case, transducer no. 2 was operated at normal 
incidence and focused on SHAs at 1″ depth in block no. 2.  Good agreement is clearly observed 
between the models and experiment.  The only exception is for size no. 2, for which the model 
predictions are actually compared with experimental data on the noise floor which obscured the 
flaw response.  In the corresponding C-scan data from which the peak-peak SHA amplitudes 
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were extracted, none of the No. 2 SHA signals can be identified above the noise level.  Both 
models have correctly confirmed this by predicting lower peak amplitudes.  The improvement in 
amplitude accuracy of the normal Born model over the weak Born model is also significant.  The 
waviness at the lower ends of the model curves is probably due to interference effects between 
the inclusion front and back wall echoes, which can superimpose constructively or destructively, 
depending on the specific inclusion sizes in that region. 
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FIGURE A-7.  PEAK-TO-PEAK SIGNAL COMPARISONS BETWEEN TWO MODELS 

AND EXPERIMENT USING TRANSDUCER NO. 2 AT NORMAL INCIDENCE, 
FOCUSED ON SHAs AT 1″ DEPTH IN BLOCK NO. 2 

 
The summary of model predictions and corresponding experimental results are given in tables 
A-7 and A-8 for all cases at three focal depths and three tilt angles, using transducers no. 2 and 4, 
respectively.  As noted above, the 10-MHz transducer no. 4 was employed here for a 
comparative study to see how its finer scan resolution would influence the ultrasonic results and 
the succeeding POTD evaluation.  For this study, the step size for transducer no. 2 was set at 
0.010″ (10 mils) just as in the FBH scans but was reduced to 0.005″ (5 mils) in both the x and y 
directions for transducer no. 4.  This was done because of the smaller, diffraction-limited spot 
site at the higher frequency.  Overall, the model predictions show good agreement with 
experimental data although they underestimate the response in most cases.  Since the higher 
impedance mismatch between the SHA and host titanium is beyond the Born model limit, this 
underestimate situation is as expected and has been confirmed by a separate comparison between 
the Born model and an exact solution pertaining to spherical inclusions [A-16]. 
 
Also note that the comparisons between the model and experiment are less significant for cases 
having missed data and are no longer valid for cases where experimental data recorded were 
actually the noise floor values (indicated respectively by M or N in tables A-7 and A-8).  
Excluding these cases, the desired 3 dB agreement is observed for all but two cases in table A-7 
(hole no. 5, 5° incidence, 1″ and 1.25″ focal depths).  For these, the disagreement is only slightly 

 A-15 



worse, having values of 3.7 and 3.6 dB, respectively.  Similar comments apply to the higher 
frequency measurements reported in table A-8.  The two cases (hole no. 5, 5° incident angle, 
1.25″ and 0.5″ focal depths) have deviations of 5.0 and 3.9 dB respectively.  The fact that those 
four disagreements all occur for the large SHA (no. 5) and greatest tilt (5° in water or ~20° in the 
solid) should be the topic of further investigation.  However, the fact that the required agreement 
of 3 dB was observed in all other cases indicates that the primary objective of this phase of the 
modeling was achieved. 
 
Naturally occurring SHAs often tend to be elongated along the axis of the billet and tend to be 
ensonified from the side in a normal billet inspection.  To test the model�s capacity in this 
geometry, the SHAs were viewed from the side after the transducer was moved to ensonify the 
edge of the block.  Figure A-8 compares the RF waveforms from an experimental measurement 
with normal Born model predictions for a typical no. 5 SHA in block no. 2 with the beam 
focused on the SHA�s cylindrical side at normal incidence using transducer no. 4.  Good 
agreement is seen in both the absolute amplitude and phase between the model and experiment.  
The slight time delay of the phase-reversed back wall echo comes from using the incident wave 
throughout the inclusion body, in the representation integral.  As noted above, this does not 
include the wave speed difference between the inclusion and the host media.  In figure A-9, the 
peak-to-peak amplitudes of all no. 5 SHAs in block no. 2, illuminated from the side using 
transducer no. 4, are compared with the two Born model predictions.  Averaging all eight SHA 
amplitudes has evidently stabilized the signal fluctuations resulting from microstructure change.  
The normal Born model is again shown to be superior to the weak Born model by predicting an 
amplitude closer to the experimental data.  By excluding the second SHA amplitude as an 
outlier, the agreement can be made to within 4% error between the experimental average and the 
normal Born model.  Since the block has not been sectioned, one cannot say why this one 
inclusion produces a response so much greater than the others.  Such a response could be caused 
by disbonding along the cylindrical side of the inclusion, but there is no evidence that such 
disbonding has occurred.   
 
A.4  APPLICATION TO NATURALLY OCCURRING HARD-ALPHA INCLUSIONS. 
 
Models have been developed for naturally occurring hard-alpha inclusions, whose response is 
dominated by small pores.  A detailed discussion of these results will appear upon the 
completion of the Contaminated Billet Study (see section 10.2).  Preliminary conclusions, based 
on two flaws, show that the models agree with the experiment to within ±6 dB, with possible 
sources of error, including the reconstruction of the flaws from a sequence of micrographs, the 
experimental measurements, and the accuracy of the models [A-17]. 
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TABLE A-7.  COMPARISON OF AVERAGED PEAK-TO-PEAK SHA SIGNALS AND THE 
CORRESPONDING STANDARD DEVIATIONS (DENOTED BY EXPT) TO MODEL 
PREDICTIONS FOR ALL CASES USING TRANSDUCER NO. 2 AND BLOCK NO. 2 

 
  Synthetic Hard-Alpha Inclusion Size  

Focal 
Depth 

Incident 
Angle No. 5 No. 4 No. 2 No. 2  

1″ 0 624   118 393   31 246   54M 177   38N EXPT 
  [542] [370] [244] [80] ADHC 
  <552> <378> <209> <98> NMBN 
1 -2.5 466   86 322   26 197   24 138   28M  
  <403> <310> <194> <91>  
1 5 201   32 169   21 150   19 91   20  
  <131> <146> <144> <69>  

1.25 0 526   95 337   26 228   43M 151   24N  
  [484] [321] [218] [67]  
  <512> <347> <203> <82>  

1.25″ -2.5 427   65 284   23 184   23 106   17M  
  <388> <294> <185> <78>  

1.25″ 5 210   32 168   17 142   18 85   20  
  <139> <154> <146> <66>  

0.5″ 0 494   97 292   34 181   50M 155   36N  
  [447] [300] [187] [61]  
  <442> <293> <165> <79>  

0.5″ -2.5 353   68 244   16 137   20 112   16M  
  <300> <234> <144> <71>  

0.5″ 5 130   23 112   17 101   12 60   9  
  <93> <102> <102> <50>  

1″ 0 630   120 391   31 244   55 177   33N  
  [542] [370] [244] [80]  
  <552> <378> <209> <98>  

 
Note:  Letter N associated with some cases denotes noise floor in which no SHA signal can be identified, while 
letter M denotes cases when some SHA signals are missed from total eight SHAs of that size.  ADHC (numbers 
within []) represents the ad hoc model, only used at normal incidence, and NMBN (numbers within <>) denotes the 
normal Born model.  Measurement units are focal depth � inch; incident angle � degree; SHA size - no. 2 = 2/64″, 
no. 3 = 3/64″, etc.; SHA amplitude - millivolts. 
 

 A-17 



TABLE A-8.  COMPARISON OF AVERAGED PEAK-TO-PEAK SHA SIGNALS AND THE 
CORRESPONDING STANDARD DEVIATIONS (DENOTED BY EXPT) TO MODEL 
PREDICTIONS FOR ALL CASES USING TRANSDUCER NO. 4 AND BLOCK NO. 2 

 
  Synthetic Hard-Alpha Inclusion Size  

Focal 
Depth 

Incident 
Angle No. 5 No. 4 No. 2 No. 2  

1″ 0 364   34 252   15 164   32 90   24M EXPT 
  [285] [215] [147] [70] ADHC 
  <304> <245> <161> <77> NMBN 
1 -2.5 163   22 134   14 97   9 69   18M  
  <153> <143> <115> <66>  

1″ 5 68   12 56   6 47   8 43   9  
  <41> <40> <41> <40>  

1.25″ 0 219   22 156   9 101   17 63   10M  
  [176] [131] [88] 44]  
  <208> <157> <97> <45>  

1.25″ -2.5 140   16 110   10 74   8 53   13M  
  <136> <113> <82> <45>  

1.25″ 5 73   14 59   6 45   7 41   10  
  <41> <39> <38> <34>  

0.5″ 0 195   22 125   67 80   18 47   15M  
  [154] [112] [70] [35]  
  <150> <112> <71> <35>  

0.5″ -2.5 91   17 74   8 50   5 35   8M  
  <85> <71> <53> <29>  

0.5″ 5 25   4 22   2 19   2 17   3  
  <16> <17> <19> <15>  

1″ 0 332   33 231  18 149   31 92   22M  
  [285] [215] [147] [70]  
  <304> <245> <161> <77>  

 
Note:  Letter N associated with some cases denotes noise floor in which no SHA signal can be identified, while 
letter M denotes cases when some SHA signals are missed from total eight SHAs of that size.  ADHC (numbers 
within []) represents the ad hoc model and NMBN (numbers within <>) denotes the normal Born model.  
Measurements units are focal depth � inch; incident angle � degree; SHA size - no. 2 = 2/64″, no. 3 = 3/64″, etc.; 
SHA amplitude - millivolts. 
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FIGURE A-8.  ABSOLUTE AMPLITUDE AND PHASE COMPARISONS BETWEEN 
MODEL AND EXPERIMENT USING TRANSDUCER NO. 4 AT NORMAL INCIDENCE 

FOCUSED ON A TYPICAL NO. 5 SHA IN SIDE-ON POSITION IN BLOCK NO. 2 
 
 

 
FIGURE A-9.  PEAK-TO-PEAK AMPLITUDES OBSERVED WITH TRANSDUCER NO. 4 

AT NORMAL INCIDENCE FOR EIGHT NOMINAL NO. 5 SHAs IN BLOCK NO. 2 AT 
1.625″ DEPTH, COMPARED WITH TWO BORN MODEL PREDICTIONS 
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